Stroke remains a leading cause of death and disability in industrialised and developing countries. Whilst new therapies evolve, attention is directed towards the mechanisms that underpin deterioration and complications. The role of infection in the aetiology and later complications of stroke is increasingly recognised. This occurs within the context of complex interplay between the brain and immune systems. Considerable debate continues as to the extent to which the brain itself contributes to the systemic response, and vice versa. The array of inflammatory/anti-inflammatory mechanisms in stroke is highly regulated at the gene and posttranslational levels. One component of these is the cytokine family. These molecules are pivotal in cross talk between brain and immune systems and activate autonomic and hypothalamic-pituitary-adrenal axes. In turn these give rise to catecholamine and glucocorticoid responses that modulate immune function. This article reviews the emerging phenomenon of stroke associated infection (SAI), its mechanism and the role of antibiotic prophylaxis in stroke.

Stroke associated infection

SAI is a common complication occurring in between 21-65% of stroke patients. The degree to which this occurs depends on a number of factors including stroke severity and pre-existing comorbidity. Even within specialised stroke units, SAI occurs in up to 65% of patients, where pneumonia accounts for the highest mortality. The high incidence of SAI has prompted the idea of a stroke induced immunodepression syndrome (SIIS).

Infectious complications account for 20% of deaths in stroke, where pneumonia and urinary tract infection (UTI) predominate. Dysphagia, in addition to reduced bulbar reflexes and drowsiness, are other factors. Despite early swallowing assessment and intervention, pneumonia remains common. There also remains a complex relationship between factors such as fever (possibly central), infection per se and thrombosis. Studies that are not prospective and do not control for initial severity and a rigorous diagnosis of infection warrant critical appraisal. More recent studies have suggested that infection and stroke worsening may be independent variables.

Evidence for a suppressed immune response

Animal studies

In patients, aspiration alone appears insufficient to explain the high incidence of stroke associated pneumonia. Much of the evidence in favour of an autoregulated but suppressed immune system following stroke is derived from animal studies. In support of a double hit hypothesis combining aspiration and an immunodeficiency syndrome, is one key animal study. Here, a combination of experimental stroke and inoculation was sufficient to cause severe pneumonia. The role of leucocytes in the mediation of immunosuppression is also considered. Both neutrophils and monocytes invade the brain in the acute/subacute phases of ischaemic stroke, but with respect to the former it remains unclear as to whether such recruitment is pathogenic or a marker of disease.

During infection, monocytes remain a lead contributor to the innate response and a principal source of proinflammatory mediators. One mediator, IL-1β is thought to be critically involved in neuronal apoptosis following ischaemia. There is evidence that resident brain macrophages or microglia contribute centrally to generating IL-1β and that such cells are active in the subacute phase of clinical stroke.

Other cytokines play a role here. In a number of experimental stroke models, cytokines such as TNF-α and IL-6 from a variety of sites prompt the production and release of corticotrophin releasing hormone (CRH) from the hypothalamus. CRH in turn mediates a pituitary based release of ACTH and consequent glucocorticoid release from adrenal cortex. Glucocorticoids in turn suppress, primarily at nuclear level, production of the proinflammatory mediators such as IL-10. Hypothalamic activation additionally downgrades, via nicotinic receptors, peripheral release of proinflammatory cytokines such as TNFα from macrophages.

In one model, rapid and extensive apoptosis of lymphocytes is observed for up to six weeks post stroke, and such animals develop spontaneous infection after initial evidence of immunosuppression. Such effects are thought to involve the autonomic nervous system, and to an extent may be blocked by propranolol. Sympathetic nervous system activation also gives rise to an exaggerated release of noradrenaline, both from brain and adrenal glands, that in

Figure 1: Box plot of arterial, venous (jugular) and arterio-jugular (V-A) gradients for IL-6 for days (D1-D7) in 12 patients with radiologically-confirmed ischaemic stroke. Significant gradients were detected on day 3 only (p<0.02, one sample sign test), consistent with a central mechanism.
turn has a net inhibitory effect on proinflamma-
tory T helper type 1 lymphocyte activity
whilst the Th2 response remains essentially
unaffected.11

Finally, evidence is now emerging for a possi-
ble genetic component to SIIS. A number of
polymorphisms relate to inflammatory
processes linked to subtypes of stroke, whilst
some evidence exists to suggest that the type of
stroke is dictated by the host immune response.12

Clinical studies
In stroke patients, a variety of systemic effects
are reported within the aftermath of stroke. These include high or low levels of ACTH that
have been reported in conjunction with poor
outcome, larger volume infarcts, reduced peripheral lymphocyte counts and impaired
natural and T cell activity.13 Longitudinal data
from acute stroke patients would suggest that
the anti-inflammatory cytokine IL-10 and
monocyte count were the two best immune
based predictors of infection.14 Within this
cohort of patients, rapid rises in proinflamma-
tory plasma cytokines such as TNF-α precede
infection, as do increases in peripheral white
blood cell counts and a high levels of cate-
cholamines. Limited data from our own labora-
tory would suggest no clear brain derived
cytokine gradients, although IL-6 may form a
peak at three days post stroke (Figure 1, person-
al communication). In other forms of acute
brain injury, e.g. trauma, higher levels of IL-10
levels are associated with greater levels of infec-
tion, perhaps by switching off circulating
monocytes. Overall the extent to which the
brain influences such processes remains largely
unknown.

Interventional studies
In experimental models of stroke, antibiotics
not only prevent pneumonia but also reduce
mortality and improve outcome.15 Based upon
such data, clinical trials have sought to evaluate
the effectiveness of prophylactic antibacterial
therapy. The Early Systemic Prophylaxis of
Infection After Stroke (ESPIAS) trial included
136 patients using levofloxacin 500mg daily for
two days within 24 hours of non-septic stroke.3
The ESPIAS trial was stopped short as the drug
did not prevent post stroke infection or
improve outcome. Indeed a non-significant
trend towards higher mortality was observed.14
Many explanations have been put forward for
this. They include choice of antibiotic, particu-
larly with respect to the spectrum of lev-
folexacin against anaerobes, that the drug was
given too early to prevent later complications,
and that the study population comprised a
highly heterogenous group including haemor-
rhagic strokes. To an extent, such factors are
addressed in a small study, the Preventative
Antibacterial Therapy in Acute Stroke (PAN-

References
1. Samson Y, Lapergue B, Hosseini H. Inflammation and ischaemic stroke: current status and
AM, Mena J. The Early Systemic Prophylaxis of Infection After Stroke study: a randomized
3. Katzan IL, Cebul RD, Husak SH, Dawson NV, Baker DW. The effect of pneumonia on mor-
4. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced
5. Dennis MS, Lewis SC, Warlow C. Effect of timing and method of enteral tube feeding for
dysphagic stroke patients (FOOD3): a multicentre randomised controlled trial. Lancet
6. Vargas M, Horcajada JP, Obach V, Revilla M, Cervera A, Torres F, Planas AM, Mena J,
Chamorro A. Clinical consequences of infection in patients with acute stroke: is it prime
7. Prass K, Braun JS, Dirnagl U, Meisel C, Meisel A. Stroke propagates bacterial aspiration to
8. Price CJ, Warburton EA, Menon DK. Human cellular inflammation in the pathology of
Warburton EA. Intrinsic activated microglia map to the peri-infarct zone in the subacute
10. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflamma-
11. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve— an integrative inter-
face between two supersystems: the brain and the immune system. Pharmacol Rev
12. Revilla M, Obach V, Cervera A, Davalos A, Castillo J, Chamorro A. A -174G/C polymor-
phism of the interleukin-6 gene in patients with lacunar infarction. Neurosci Lett
13. Schwarz S, Schwab S, Klinga K, Maser-Gluth C, Bettendorf M. Neuroendocrine changes in
CFS patients with acute space occupying ischaemic stroke. J Neurol Neurosurg Psychiatry
patients with acute space occupying ischemic stroke. J Neurol Neurosurg Psychiatry
Meisel A. Preventive antibacterial treatment improves the general medical and neurological

Acknowledgments
The author wishes to acknowledge the support of the Medical Research Council, the Raymond & Beverley Sackler Fellowship, Dr Elizabeth Warburton, Mrs Diana Day and Dr Rainer Doffinger (Addenbrookes NHS Trust) and Professors David Menon and Jean-Claude Baron (University of Cambridge).