Atlas of Clinical Sleep Medicine

Pictures for bedtime stories – how a platypus dreams
From within one of the larger sleep services, where we see all sleep disorders – respiratory and neurological, I realise that I may be one of the few UK Neurologists to benefit from the full range of pictures and videos within this book. As a regular teacher on the same range of sleep disorders, one of its best features is excellent online access (to all the pictures, graphs, polysomnography traces and patient videos). There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

The US based authors have had the luxury of practicing Sleep Medicine as a distinct subspecialty for many years. An accredited training programme (and a lucrative polysomnography tariff) has allowed large numbers of full inpatient video polysomnography studies to be performed for all sleep disorders. In the UK and mainland Europe, limited home studies are routinely performed for sleep apnoea screening (constituting the majority of referrals to any sleep service); they are generally less invasive and certainly much cheaper. Information on domiciliary studies of this kind is (inevitably) a weak point in the book.

There are many pages of polysomnography traces which I found helpful, as will my sleep technician colleagues; they will be of little use to those who do not have access to the ‘kit’. For epileptologists who also see nocturnal sleep disorders, the standard PSG page (a 30 second epoch, rather than 10 seconds) will take some acclimatisation.

And the platypus? The first video shows a platypus, awake and then dreaming. The platypus has more REM sleep than any other mammal, giving up to 8 hours a day of sleep. Platypus dreams seem far more peaceful than the ones of our Parkinson’s patients!

The book first covers both normal sleep biology and the standard sleep disorders, and sleep disturbance in common medical conditions, which is a structure it shares with a number of other sleep textbooks. The chapters covering the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

However, given that this is an atlas, it seems best to judge the pictures, graphs, polysomnography traces and patient videos. There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

One of its best features is excellent online access (to all the pictures, graphs, polysomnography traces and patient videos). There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

The US based authors have had the luxury of practicing Sleep Medicine as a distinct subspecialty for many years. An accredited training programme (and a lucrative polysomnography tariff) has allowed large numbers of full inpatient video polysomnography studies to be performed for all sleep disorders. In the UK and mainland Europe, limited home studies are routinely performed for sleep apnoea screening (constituting the majority of referrals to any sleep service); they are generally less invasive and certainly much cheaper. Information on domiciliary studies of this kind is (inevitably) a weak point in the book.

There are many pages of polysomnography traces which I found helpful, as will my sleep technician colleagues; they will be of little use to those who do not have access to the ‘kit’. For epileptologists who also see nocturnal sleep disorders, the standard PSG page (a 30 second epoch, rather than 10 seconds) will take some acclimatisation.

And the platypus? The first video shows a platypus, awake and then dreaming. The platypus has more REM sleep than any other mammal, giving up to 8 hours a day of sleep. Platypus dreams seem far more peaceful than the ones of our Parkinson’s patients!

The book first covers both normal sleep biology and the standard sleep disorders, and sleep disturbance in common medical conditions, which is a structure it shares with a number of other sleep textbooks. The chapters covering the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

However, given that this is an atlas, it seems best to judge the pictures, graphs, polysomnography traces and patient videos. There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

One of its best features is excellent online access (to all the pictures, graphs, polysomnography traces and patient videos). There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

The US based authors have had the luxury of practicing Sleep Medicine as a distinct subspecialty for many years. An accredited training programme (and a lucrative polysomnography tariff) has allowed large numbers of full inpatient video polysomnography studies to be performed for all sleep disorders. In the UK and mainland Europe, limited home studies are routinely performed for sleep apnoea screening (constituting the majority of referrals to any sleep service); they are generally less invasive and certainly much cheaper. Information on domiciliary studies of this kind is (inevitably) a weak point in the book.

There are many pages of polysomnography traces which I found helpful, as will my sleep technician colleagues; they will be of little use to those who do not have access to the ‘kit’. For epileptologists who also see nocturnal sleep disorders, the standard PSG page (a 30 second epoch, rather than 10 seconds) will take some acclimatisation.

And the platypus? The first video shows a platypus, awake and then dreaming. The platypus has more REM sleep than any other mammal, giving up to 8 hours a day of sleep. Platypus dreams seem far more peaceful than the ones of our Parkinson’s patients!

The book first covers both normal sleep biology and the standard sleep disorders, and sleep disturbance in common medical conditions, which is a structure it shares with a number of other sleep textbooks. The chapters covering the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

However, given that this is an atlas, it seems best to judge the pictures, graphs, polysomnography traces and patient videos. There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

One of its best features is excellent online access (to all the pictures, graphs, polysomnography traces and patient videos). There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

The US based authors have had the luxury of practicing Sleep Medicine as a distinct subspecialty for many years. An accredited training programme (and a lucrative polysomnography tariff) has allowed large numbers of full inpatient video polysomnography studies to be performed for all sleep disorders. In the UK and mainland Europe, limited home studies are routinely performed for sleep apnoea screening (constituting the majority of referrals to any sleep service); they are generally less invasive and certainly much cheaper. Information on domiciliary studies of this kind is (inevitably) a weak point in the book.

There are many pages of polysomnography traces which I found helpful, as will my sleep technician colleagues; they will be of little use to those who do not have access to the ‘kit’. For epileptologists who also see nocturnal sleep disorders, the standard PSG page (a 30 second epoch, rather than 10 seconds) will take some acclimatisation.

And the platypus? The first video shows a platypus, awake and then dreaming. The platypus has more REM sleep than any other mammal, giving up to 8 hours a day of sleep. Platypus dreams seem far more peaceful than the ones of our Parkinson’s patients!

The book first covers both normal sleep biology and the standard sleep disorders, and sleep disturbance in common medical conditions, which is a structure it shares with a number of other sleep textbooks. The chapters covering the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

However, given that this is an atlas, it seems best to judge the pictures, graphs, polysomnography traces and patient videos. There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

One of its best features is excellent online access (to all the pictures, graphs, polysomnography traces and patient videos). There are also several patient interviews – a really useful resource, and a key change to this second edition of the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

The US based authors have had the luxury of practicing Sleep Medicine as a distinct subspecialty for many years. An accredited training programme (and a lucrative polysomnography tariff) has allowed large numbers of full inpatient video polysomnography studies to be performed for all sleep disorders. In the UK and mainland Europe, limited home studies are routinely performed for sleep apnoea screening (constituting the majority of referrals to any sleep service); they are generally less invasive and certainly much cheaper. Information on domiciliary studies of this kind is (inevitably) a weak point in the book.

There are many pages of polysomnography traces which I found helpful, as will my sleep technician colleagues; they will be of little use to those who do not have access to the ‘kit’. For epileptologists who also see nocturnal sleep disorders, the standard PSG page (a 30 second epoch, rather than 10 seconds) will take some acclimatisation.

And the platypus? The first video shows a platypus, awake and then dreaming. The platypus has more REM sleep than any other mammal, giving up to 8 hours a day of sleep. Platypus dreams seem far more peaceful than the ones of our Parkinson’s patients!

The book first covers both normal sleep biology and the standard sleep disorders, and sleep disturbance in common medical conditions, which is a structure it shares with a number of other sleep textbooks. The chapters covering the atlas, for a specialty where there are very few physical signs and the history is rarely taught at undergraduate level.

European Academy of Neurology – Excellence in Neurology in Europe
www.eaneurology.org

The EAN is an organisation of 45 European national neurological societies, 400 individual members and 9 associate member societies. There are currently 21,000 members.

The purpose of the EAN is:
• to increase the availability and standards of neurological services;
• to advance the development of neurology as the major medical specialty caring for patients with neurological disorders;
• to encourage collaboration between European national neurological societies;
• to strengthen collaboration between clinical neurology and related professional and lay organisations;
• to support neurological research, encourage research collaboration, and promote dissemination of research results;
• to strengthen the standard, availability and equality of neurological education for neurologists and affiliated/related health professionals;
• to raise awareness among the lay public, media, health care providers and other stakeholders, as well as law and policy makers about the burden and cost of neurological disorders and the benefits which clinical neurology can bring;
• to collaborate with international, national and regional neurological associations and related international health organisations;

The EAN will base its activities on the following five values:
• Professionalism. The EAN will strive to reach the highest scientific standards and to deliver unbiased information in its research and educational activities.
• High ethical standards. The EAN will apply high ethical standards in all its activities within science, education, liaison, and administration, complying with applicable regulations and codes of ethics.
• Involvement. The EAN will strive to involve its members and collaborators in the organisation of research, education and liaison activities.
• Independence. The EAN will operate as a professional and scientific organisation, independent from the political or commercial interests of external companies or organisations.
• Transparency. The EAN will provide transparency in the organisation of all its scientific and administrative activities.

The EAN consists of: Assembly of Delegates of institutional and individual delegates; an EAN Board; Committees – Education; Liaison; Programme; and Scientific. There are 31 Subspeciality Scientific Panels.

The EAN’s official publications are The European Journal of Neurology and Neurogenews.