We describe a rare case of a previously fit patient who presented with a rapidly progressive dementia and gait ataxia. EEG showed features of non-convulsive status epilepticus that was not responsive to anti-epileptic drugs. Post mortem brain biopsy confirmed sporadic Creutzfeldt-Jakob disease (sCJD).

A diagnosis of sCJD should be considered in patients with rapidly progressive dementia with non-convulsive status epilepticus especially with positive CSF protein 14-3-3 markers.

Introduction

Sporadic Creutzfeldt-Jakob disease (sCJD) is an insidious prion disease commonly presenting with rapidly progressive dementia, motor dysfunction, myoclonus, and characteristic periodic complexes on electroencephalogram (EEG). Partial, complex partial and secondary generalised seizures may occur in sCJD but are relatively uncommon, and status epilepticus is a rarity and may cause diagnostic confusion. Non convulsive status epilepticus (NCSE) is characterised by continuous epileptiform patterns on EEG, alteration of consciousness including coma and the absence of convulsive motor activity. We present an unusual patient who was admitted with a rapidly progressive global cognitive impairment, fluctuating level of consciousness and EEG features of NCSE. Post mortem examination of the brain confirmed sCJD.

Case report

A 63-year-old previously well right-handed housewife was admitted with a 1-month history of progressive unsteadiness of gait and changes in personality and behaviour. She had become apathetic, withdrawn, disoriented in time and unconcerned about her appearance. She had been unable to cope with her housework and increasingly dependent on her husband. Her verbal output had been reduced with inappropriate answers and she had been unable to follow conversations. She had a past history of hypothyroidism and took regular thyroxine replacement.

Initial neurological examination revealed receptive dysphasia. She was disoriented in time and place. Cranial nerves were intact. There was a bilateral Gegenhalten increase in muscle tone and motor perseverations but no grasp reflex. All reflexes were moderately brisk with flexor plantar responses. There was no myoclonus. Her gait was ataxic but a detailed assessment of limb coordination was not possible.

Routine blood and urine investigations, thyroid function and anti-thyroid antibodies, extensive autoimmune profile, anti-neuronal antibodies, serum electrophoresis, Vitamin B12 and folate levels and chest X-ray were normal. CT scan of the brain and the CSF examination were normal. However, the EEG revealed widespread, almost continuous repetitive 1-1.5Hz triphasic sharp and slow waves at 100-150uV, with an anterior emphasis, intermixed with rhythmic 5-7Hz theta waves in the posterior and central regions (20-30uV) (Figure 1) which did not alter during periods of agitation or eye opening. There was a brief response to intra-venous lorazepam. The EEG changes were suggestive of non-convulsive status epilepticus (NCSE). MRI scan of the brain revealed areas of high signal in the caudate and lentiform nuclei with normal signal in the thalamus, putamen, and corona radiata.

Figure 1: Almost continuous repetitive 1-1.5 Hz triphasic sharp, slow waves with an amplitude of 100-150uV that was widespread with an anterior emphasis intermixed with rhythmic 5-7 Hz theta waves in the posterior and central regions (20-30uV).
thalami. In view of these findings CSF was re-
examined for CJD markers was and was found to be positive for protein 14-3-3.
The patient’s level of consciousness fluctuated widely with Glasgow Coma Score (GCS) of 5-
13. Repeated EEG’s showed her to be in persist-
tent NCSE that was resistant to treatment with
phenytoin, sodium valproate, lorazepam and
phenobarbitaline.
Within days of admission the patient became
bed-bound with increasing rigidity of all limbs,
hyperorreflexia, incontinence and monosyllabic
speech gradually progressing to akinetic
musitis. Two weeks after admission, she deteri-
orated dramatically with a drop in GCS to 5
accompanied by decorticate posturing. Repeat
EEG confirmed her to be in NCSE with less than
5 sec bursts of normal activity in spite of thera-
peutic serum phenytoin levels. She was aggres-
sively managed in the ITU with anaesthetic
doses of propofol (achieving burst suppression),
but remained in NCSE. She developed a chest
infection and septicaemia and died a month after
admission.
A post mortem brain examination revealed
spongiiform change in the brain with neuronal
loss in the cortex, deep grey nuclei and cerebel-
 lul with synaptic pattern of PrP immunopositi-
vity in the cortex, grey nuclei and cerebellum
confirming sCJD.

Discussion
In 1920-21 Hans Jakob1 and Alfons Creutzfeldt2 first reported cases of a progressive dementing
neurological disease which bears their name. This
uncommon disease presents as a rapidly
progressive dementia associated with a range of
neurological signs, most commonly myoclonus of
the limbs, cerebellar ataxia, and rigidity3 with
a reported incidence of 1 per million-popula-
tion year.4 In the absence of neuropathology, the
patients are classified as probable if they present
with progressive dementia, typical EEG changes
and at least two of the following: myoclonus,
visual or cerebellar signs, pyramidal or extra-
pyramidal signs, akinetic mutism (Masters clas-
sification).5

Usual EEG changes in sporadic CJD include
slowing down of background rhythms with
periodic sharp wave complexes that may be lat-
eralized or diffuse6 and may or may not be syn-
chronous with myoclonus.7 Generalized or focal
seizures have been known to occur in 10-15%
patients with CJD in the course of the disease
and are often resistant to anti epileptic drugs.8
NCSE is characterised by continuous epilepti-
form patterns on EEG in a particular pattern
(focal, general, or bi-hemispheric pattern),
alteration of consciousness including coma and
the absence of convulsive motor activity.9
The MRI findings in our patient were typical
of patients with sCJD as reported by
Finkenstaedt et al. in 199610 with increased sig-
nal in bilateral caudate and putamen regions.
The ‘pulvinar sign’ characterised by signal inten-
sity in the posterior thalamus commonly noted
in variant CJD (vCJD) was not noted in our
patient.11 Although the presence of protein 14-3-3 in
the CSF indicates rapid brain destruction, its
presence and persistence is more indicative of
CJD as compared to other dementias or inflam-
matory processes in the brain.12 Furthermore,
the presence of the protein is more indicative of
sCJD13 although it may be raised in 50% of the
patients with vCJD.14

Our patient was unusual in that, in addition to
a rapidly progressive dementia and motor
disturbances, she presented with features of
NCSE, in the absence of a previous history of
epilepsy. Indeed only a few cases have been
reported with CJD presenting as NCSE.1415
Schwinn et al.16 presented 4 patients diagnosed
retrospectively with a mean age of 64 years pre-
senting with acute and sub acute changes in
their mental status and NCSE. All were aggres-
sively treated with anti-convulsants and none
showed clinical improvement (despite improve-
ment in their EEGs) with death ensuing within
3 months.

Shapiro et al17 has recently reported a 70-year-
old patient with sCJD presenting with a one
month history of deteriorating mental status,
EEG revealed NCSE, which did not respond to
standard anti-epileptic medication, and thus the
patient was managed with a midazolam infu-
sion in the ICU in a bid to control the NCSE.
The clinical description is very similar to our
patient.

Conclusion
This case demonstrates the diagnostic dilemma
when presented with a patient with progressive
alteration in mental status and altered level of
consciousness with no convulsive motor move-
ments. When the aetiology of NCSE cannot be
established the diagnosis of CJD should be kept
in mind. Serial EEGs, MRI scans and CSF eval-
uation for protein 14-3-3 can aid the clinical
diagnosis and prognosis in these patients.
Diagnosing CJD has significant consequences
for the patient and potential risks for iatrogenic
transmission need to be considered.

Acknowledgement
We would like to thank Dr Tim Moss Consultant
Neuropathologist and Dr Sam Baratouni, SpR in
Neuropathology for conducting the neuropathological
examination.

References
1. Jakob A. Über eigenartige Erkrankungen des
Zentralnervensystems mit bemerkenswertem anatomischen
Befunde (Spätsäkralpseudolähmung mit disseminiertem
Degenerationsherden). Zeitschrift für die gesamte
Neurologie und Psychiatrie 1921; 64:147-228.
2. Creutzfeldt HG. Über eine eigenartige herdförmige
Erkrankung des Zentralnervensystems (vorläufige
Mitteilung). Z ges Neurol Psychiat 1920; 57:1-18
Creutzfeldt-Jakob disease: clinical analysis of a consecutive
series of 230 neuro-pathologically verified cases. Ann
4. Heinfellner IA, Jellinger K, Diringer H, Gaentzchek M,
disease in Austria. J Neurol Neurosurg Psychiatry
1996;61:139-42.
5. Masters CL, Harris JO, Gajdusek DC, Gibbs CJ Jr,
Bernoulli C, Asher DM. Creutzfeldt-Jakob disease: pat-
terns of worldwide occurrence and the significance of
familial and sporadic clustering. Ann Neurol
1979;5:177-88.
S, Zerr I, Kretschmar H, Weber T. Accuracy and reliabil-
ity of periodic sharp wave complexes in Creutzfeldt-Jakob
8. Colgok, M. Rozeau and J.C. Morgenlander. Seizures and
9. Shnaker BF, Fountain NR. Assessment of acute morbidity
and mortality in non convulsive status epilepticus.
10. Finkenstaedt M, Sraud A, Zerr I, Poser S, Hise JH,
Stoebner JM, Weber T. MR imaging of Creutzfeldt-Jakob
11. Zeidler M, Sellar BJ, Collie DA, Knight R, Stewart G,
Macleod MA, Ironside JW, Cournos S, Colchester AC,
Hadley DM, Will BG, Colchester AE. The pulvinar sign
on magnetic resonance imaging in variant Creutzfeldt-
BJ, Schroeter A, Finkenstaedt M, Schulz-Schaeffer WJ,
Kretzschmar HA, Felgenhauer K. How to improve the
1999 Dec;122:2345-51.
13. Zerr I, Pochiari M, Collins S, Brandel JP, de Pedro
Cuesta I, Knight RS, Bernheimer H, Cardone F,
Delasnerie-Laupretre N, Cuadrado Corrales N,
Ladogana A, Bodemer M, Fletcher A, Awan T, Ruiz
Bremo A, Budka H, Laplanche JL, Will BG, Poser S.
Analysis of EEG and CSF 14-3-3 proteins as aids to the
diagnosis of Creutzfeldt-Jakob disease. Neurology
McKenzie M, MacLeod MA, Ironside JW, Will BG,
Knight RS. Use of 14-3-3 and other brain-specific proteins
in CSF in the diagnosis of variant Creutzfeldt-Jakob dis-
15. Schwinn PJ, Krumholz and Seiden LG. Creutzfeldt-Jakob
disease presenting as non-convulsive status epilepticus.
Epilepsia 2001;42 Suppl 7:146-7.
Acebes A, Calatayud MT. Creutzfeldt-Jakob disease and
non-convulsive status epilepticus: a clinical and electroen-
17. Shapiro JM, Shuaat A, Wang J, Chen X. Creutzfeldt-
–Jakob disease presenting as refractory non convulsive sta-