Scepticism in the face of new ideas has long prevailed in the medical profession, and is usually healthy. Dissemination of medical advances and research now occurs rapidly and the pace of change of clinical practice has consequently increased. There is a general expectation of quicker assimilation of sound scientific observations and with it increasing demands placed on individuals to assess the scientific value and rigor of published material. The authors of review articles are in a particular position of responsibility to produce dispassionate and informed material, and reluctance to accept scientific evidence just because it does not conform to traditional thinking or because of personal bias may ultimately deprive patients of potential treatment.

An example of such reluctance is the notion that gluten sensitivity is solely a disease of the bowel. The evidence that gluten sensitivity can primarily affect other organs, with sparing of the bowel, is not new. In 1966 Marks and her colleagues demonstrated an enteropathy in 9 of 12 patients with Dermatitis herpetiformis (DH). It was later shown that the enteropathy and the skin rash were gluten dependent but skin involvement could occur without evidence of gut involvement. Moreover patients with DH characteristically have few if any gastrointestinal symptoms, in contrast to patients with coeliac disease (CD). Nowadays, dermatologists treating DH are not very interested in the state of their patients’ bowel mucosa. Such patients do not routinely have a small bowel biopsy, but are treated immediately with a gluten-free diet.

In refining the pathological spectrum of the bowel mucosa in the context of gluten sensitivity Mike Marsh performed a series of elegant experiments looking at gluten load and mucosal pathology in patients with gluten sensitivity. He demonstrated that mucosal pathology correlated with gluten load, and defined a spectrum of lesions ranging from the pre-infiltrative (type 0, histologically normal mucosa) to the atrophic hypoplastic (type 4). Thus, he demonstrated that you can have gluten sensitivity but have a normal bowel mucosa. Marsh’s observations were considered somewhat eccentric at the time, yet now most scientific papers grade gut pathology using the “Marsh classification”.

Nine years ago we started working on the concept that gluten sensitivity can be principally a neurological illness. Perhaps the best characterised disorder we have studied is gluten ataxia. It is unsurprising to suggest that neurological “associations” of gluten sensitivity such as ataxia are purely coincidental. Pathological studies and published prevalence figures confirm the contrary view. Table one summarises the published studies concerning the prevalence of gluten sensitivity in patients with ataxia. Although it is true that some studies are of small patient numbers with limited power and lack of adequate control populations, the more carefully executed studies with adequate controls are conclusive: there is a significantly higher prevalence of gluten sensitivity in patients with “idiopathic” sporadic ataxia than those with familial ataxia or control subjects. Variations in the prevalence between studies is likely to reflect differences in the antigliadin assay used (hence the necessity of comparison with control populations) as well as geographical variations.

Several clues to the neuropathological basis of these disorders are emerging. Neuropathological data from patients with gluten ataxia suggest an inflammatory process with T-cell infiltration primarily of the cerebellum and ultimately the loss of Purkinje cells. Patients with gluten ataxia have antibodies against Purkinje cells and anti-gliadin antibodies cross-react with epitopes on Purkinje cells. The CSF in these patients shows oligoclonal bands in more than half and upregulation of the chemokine IP-10, a T cell chemotaxtractant, when compared to controls. Seventy percent of patients with gluten ataxia have the same HLA genotype as found in patients with coeliac disease. There is an increased incidence of autoimmune diseases amongst patients with gluten ataxia (unpublished observation). Perhaps more compelling evidence still, comes from the results of the effect of gluten free diet in patients with gluten ataxia. Gluten free diet results in improvement of the ataxia in patients with gluten ataxia. Gluten free diet in patients with gluten ataxia is only about 24%.

Despite this overwhelming evidence of a gluten-driven immune pathogenesis, some continue to propose (without any corroborative scientific data) that “trace element” deficiency due to the enteropathy is a possible explanation. As only a quarter of these patients have an enteropathy, it is difficult to imagine how such a deficiency might arise, let alone what chemical might be deficient.

Whilst CD, DH and gluten ataxia are all manifestations of gluten sensitivity, it is wrong to propose that DH and gluten ataxia should fall under the umbrella of CD, implying that they are all one and the same.

Authors

Richard Grünwald is an Honorary Clinical Senior Lecturer at the University of Sheffield and a Consultant Neurologist at Sheffield Teaching Hospitals NHS Trust and Chesterfield Royal Hospital. His MD thesis was on the neurological manifestations of gluten sensitivity. His current research interests include the neurological manifestations of systemic disease with an emphasis on gluten sensitivity as well as the aetiology of “idiopathic” ataxia. He runs a weekly gluten sensitivity/neurology clinic as well as an ataxia clinic.

Marinos Hadjivassiliou is an Honorary Clinical Senior Lecturer at The University of Sheffield and a Consultant Neurologist at Sheffield Teaching Hospitals NHS Trust and Chesterfield Royal Hospital. He runs a weekly gluten sensitivity clinic and a gluten ataxia clinic. He is a Consultant Neurologist at the University of Sheffield and Honorary Clinical Senior Lecturer at the University of Sheffield and a Consultant Neurologist at Sheffield Teaching Hospitals NHS Trust and Barnsley District General Hospital. His current research interests also include the pathophysiology of dementia, the role of metabolic abnormalities in Parkinson’s disease and memory dysfunction in epilepsy.

Table 1. A list of studies looking at the prevalence of antigliadin antibodies in patients with sporadic ataxia and controls. All but one of these studies show a significantly higher prevalence of gluten sensitivity in patients with sporadic ataxia compared to controls. Studies without controls are not included. Studies marked with * refer to prevalence of coeliac disease. N/A: not available.

<table>
<thead>
<tr>
<th>Study details</th>
<th>sporadic ataxias</th>
<th>familial ataxias</th>
<th>normal controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadjivassiliou et al (UK)*</td>
<td>59/143 (41%)</td>
<td>8/51 (14%)</td>
<td>149/1200 (12%)</td>
</tr>
<tr>
<td>Pellecchia et al (Italy)</td>
<td>3/24 (13%)</td>
<td>0/23 (0%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Burk et al (Germany)*</td>
<td>12/104 (11.5%)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bushara et al (USA)*</td>
<td>7/26 (27%)</td>
<td>9/24 (37%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Abele et al (Germany)*</td>
<td>13/98 (13%)</td>
<td>1/15 (6%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Loostarien et al (Finland)</td>
<td>44 (16.7%)</td>
<td>N/A</td>
<td>2%</td>
</tr>
</tbody>
</table>

ACNR • VOLUME 2 NUMBER 6 • JANUARY/FEBRUARY 2003
neurological dysfunction in patients with gluten sensitivity (pos-
tulated to be the case in patients with DH who may not be as
strict with their diet) is unsubstantiated. If the duration of expo-
sure to gluten was pivotal in the development of gluten related
diseases, classic CD would not typically present between the
age of 6 to 18 months of age. It is likely that the type and preva-
ience of neurological dysfunction in DH is similar to that found
in patients with established CD. A recent study looking at neu-
rological dysfunction in 35 patients with DH did not have the
power to determine if the prevalence of neurological dysfunc-
tion is different in DH than in CD, but a very large difference
was excluded.14 The majority of people with genetic susceptibil-
ity to gluten sensitivity (HLA DQ2) are exposed to gluten for all
their lives but do not develop CD, DH or gluten ataxia. The fac-
tors responsible for the development of gluten-driven patholo-
gy are more complicated than duration of exposure.

It is of considerable interest to question why patients with
gluten sensitivity manifest with such diverse organ involvement,
albeit with some overlap. Clues to an answer may be found in
the role of transglutaminases. Tissue transglutaminase is the
antigen recognised by endomysium antibodies, the most sensi-
tive and specific marker of gluten sensitive enteropathy (CD).
Apart from crosslinking proteins, tissue transglutaminases (of
which there are several types) deamidate gluten-donor sub-
strates, such as gliadin proteins. It has been postulated that this
process may result in the creation of neoepitopes that could
play a role in the immune pathogenesis of other diseases.15 A
recent study reported that patients with DH have antibodies
with low affinity for tissue transglutaminase but very high affinity
for epidermal transglutaminase.16 This results in an immune
response and clinical manifestations in the skin, the main site of
epidermal transglutaminase production. An analogous situation
may exist in the case of gluten ataxia where an immune
response directed towards neural transglutaminases may result
in clinical manifestations primarily in the brain or the peripher-
al nervous system and not the gut. Characterisation of the anti-
gen recognised by Purkinje cell antibodies found in the serum
of patients with gluten ataxia may contribute further in resolv-
ing the possible pathogenic mechanism.

We must advance such concepts by abandoning historical
misconceptions and reviewing current literature in an analytical
and disinterested way. It is time to move on from gut to brain.

References
1. Marks J, Shuster S, Watson AJ. Small bowel changes in
2. Marsh M. Gluten, Major Histocompatibility Complex and
3. Hadjivassiliou M, Grünewald RA, Chattopadhyay AK,
Davies-Jones GAB, Gibson A, Jarratt JA et al. Clinical,
radiological, neurophysiological and neuropathological
4. Hadjivassiliou M, Grünewald RA, Davies-Jones GAB.
Gluten sensitivity as a neurological illness. J Neurol
5. Pellecchia MT, Scala R, Filla A, De Michele G, Ciacci C,
Barone P. Idiopathic cerebellar ataxia associated with
celiac disease: lack of distinctive neurological features. J
M et al. Sporadic cerebellar ataxia associated with gluten
7. Bushara KO, Goebel SU, Shill H, Godfarb LG, Hallett M.
Gluten sensitivity in sporadic and hereditary cerebellar
8. Abele M, Bürk K, Schöls L, Schwartz S, Besenthial I,
Dichgans J et al. The aetiology of sporadic adult-onset
TA. Coeliac disease in patients with cerebellar ataxia of
10. Hadjivassiliou M, Boscolo S, Davies-Jones GAB,
Grünewald RA, Not T, Sanders D, Simpson JE, Tongiorgi
E, Williamson CA, Woodroofe NM. The humoral
response in the pathogenesis of gluten ataxia. Neurology
2002; 58: 1221-1226.
S, Woodroofe MN. Hadjivassiliou M. Gluten ataxia is
immune mediated. J Neurol Neurosurg Psychiatry
2002;72:1240.
12. Hadjivassiliou M, Grünewald RA, Sharrack B, Sanders D,
Lobo A, Wood N, Williamson C, Woodroofe N, Davies-
Jones GAB. Gluten ataxia in perspective: epidemiology,
genetic susceptibility and clinical characteristics. Brain
(in press).
13. Hadjivassiliou M, Grünewald RA, Davies-Jones GAB.
Gluten ataxia. The effect of gluten free diet. Ann Neurol
2002;52: 63.
14. Wills AJ, Turner B, Lock RJ, Johnston SL, Unsworth DJ,
Fry L. Dermatitis Herpetiformis and neurological dys-
15. Schuppan D, Esslinger B, Trapp D, Dieterich W. Tissue
transglutaminase as coeliac disease autoantigen.
In Proceedings of the workshop on transglutaminases,
protein cross-linking and coeliac disease. September 2001
Tampere, Finland.
16. Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N.
Epidermal transglutaminase (Tgase 3) is the autoantigen
17. Hadjivassiliou M, Grünewald RAG, Lawden M, Davies-
Jones GAB, Powell T, Smith CML. Headache and CNS
white matter abnormalities associated with gluten sensi-

Correspondence to:
Dr M Hadjivassiliou, Dept of Neurology, The Royal Hallamshire
Hospital, Sheffield S10 2JF
E.mail: m.hadjivassiliou@Sheffield.ac.uk

Figure 1. MRI of one of our patients with gluten sensitivity, episodic migraine-like headaches and white matter abnormalities. The patient remains asymptomatic 5 years after the diagnosis of gluten sensitivity and the introduction of gluten free diet. The clinical and radiological characteristics distinguish this entity from MS. The response to diet, lack of family history and absence of progression exclude CADASIL as an alternative diagnosis.