EDITOR’S CHOICE

Adult neural precursor cells and brain repair

The role and capabilities of the endogenous adult neural precursor cells have been debated in recent years but a number of papers in the last couple of months are starting to provide clear answers. Two papers have now clearly shown that adult neural precursor cells (npc) in the rat brain can respond to ischaemic lesions involving the striatum and hippocampus. Arvidsson and colleagues in Lund in a paper in Nature Medicine have shown that middle cerebral occlusion induces npc migration into the striatum (although interestingly not the overlying cortex) where they differentiate into the appropriate neuronal phenotype. However, it is not clear how successful such a reparative response is, in terms of the number of neurons generated and whether this is sufficient to alter behaviour.

The second paper is in Cell by Nakatomi et al and is a real tour de force, demonstrating that adult npc can lead to the regeneration of hippocampal pyramidal cells after an ischaemic insult (although other neurons were seen at other sites). These authors demonstrate that the cells can migrate to the hippocampus where they differentiate into the new neurons as evidenced by morphology, connectivity and neurophysiologically and that this has a functional consequence to the animal. Furthermore manipulation of the system using neurotrophic factors and anti-inflammatory agents influences this response. This paper therefore demonstrates the capacity of adult npc to respond to ischaemic insults using a range of different methods and approaches and thus sets a new standard for such studies as well as offering hope for the future as a therapeutic approach.

Finally a paper by Theo Palmer et al has shown that neurogenesis can be adversely affected by cranial irradiation, probably by altering the environment in which the npc finds itself. This in turn may have consequences for understanding the sequelae of childhood irradiation and systemic chemotherapy in terms of cognitive deficits - a point that at the present time remains conjectural and unproven.

Therefore it is becoming clear that adult npc can respond to some injuries and mediate repair and that preventing their normal turnover may have significant consequences, although the extent to which this applies to man and the range of insults that the adult CNS is subject to remains to be discovered. - RAB


Panel of Reviewers

Roger Barker, Honorary Consultant in Neurology, Cambridge Centre of Brain Repair
Patrick F Chinnery, Senior Lecturer in Neurogenetics and Honorary Consultant Neurologist, University of Newcastle upon Tyne and Newcastle Hospitals NHS Trust
Ailie Turton, Research Fellow, Burden Neurological Institute, Bristol
Amanda Cox, Research Registrar, Addenbrooke’s Hospital, Cambridge
Tom Foltynie, Neurology Research Registrar, Cambridge
Richard Hardie, Consultant Neurologist and Director of Neurorehabilitation, Headley Court Medical Rehab Unit
Tim Harrower, Wellcome Clinical Research Fellow and Honorary Neurology Clinical Fellow, Addenbrooke’s Hospital
Andrew Larner, Consultant Neurologist, Walton Centre for Neurology & Neurosurgery, Liverpool
Simon J G Lewis, Honorary Clinical Research Fellow, Cambridge Centre for Brain Repair
Mark Manford, Consultant Neurologist, Addenbrooke’s Hospital, Cambridge, and Bedford Hospitals
Peter Martin, Consultant Neurologist, Addenbrooke’s Hospital, Cambridge
Brian McNamara, SpR in Clinical Neuropathology, Addenbrooke’s Hospital, Cambridge
Jane Mickelborough, Research Fellow, University of Salford
Wojtek Rakowicz, SpR Neurology, National Hospital for Neurology and Neurosurgery, London
Julian Ray, Neurophysiology SpR, Addenbrooke’s Hospital, Cambridge
Robert Rotthier, Consultant Neurosurgeon, Morriston Hospital, Swansea
John Thorpe, Addenbrooke’s Hospital, Cambridge, and Peterborough
Ailie Turton, Research Fellow, Burden Neurological Institute, Bristol
Andrew Worthington, Brain Injury Rehabilitation Trust, Birmingham

For more information on joining our panel of reviewers, E-mail AdvancesinCNR@aol.com or Tel. Rachael Hansford on 0131 477 2335.

NEUROTOXINS

Nanging and Neurology

A case report from New Zealand provides an additional cause for sub acute combined degeneration of the spinal cord. This condition arises as a result of vitamin B12 deficiency, which leads to deficient production of myelin phospholipids. The dorsal columns bear the brunt of the insult but other components of the spinal cord and peripheral nerves are also involved leading to myelopathy, peripheral axonal neuropathy, with paraesthesiae, gait ataxia, sphincter disturbance and pyramidal weakness. Cognition and levels of anxiety may also be affected. These were the features that the subject of this case report presented with. The eventual cause of the Vitamin B12 deficiency in this 37-year-old man, after other possible causes were excluded, was excessive inhalation of nitrous oxide. Replacement treatment with parental vitamin B12 produced resolution of the symptoms.

What is interesting with this case report is the insight into nitrous oxide inhalation, which is the commonest inhaled agent of abuse. A common source of the nitrous oxide is capsules used to produce whipped cream, which are readily available from supermarkets and hardware stores. The sound distortions produced after inhalation of nitrous oxide are referred to as "nanging". The cobalt atom in vitamin B12 is irreversibly oxidised by nitrous oxide effectively producing a Vitamin B12 deficiency. -TH

Ng J, and Frith R. Nanging. LANCET 2002; 360:384

ALZHEIMER’S DISEASE

RECOMMENDED

IVlg for Alzheimer’s disease?

Intravenous immunoglobulin (IVlg) is used in the treatment of several neurological disorders presumed to have immune-mediated pathogenesis. This paper suggests that Alzheimer’s disease (AD)
bodies both increased, with a non-significant trend toward in AD brain. The role of such antibodies is uncertain, but they may be a variety of neurological indications (MS, peripheral neuropathy, LEMS, dermatomyositis) were shown to have reduced CSF total A\(^{-}\) and increased CSF anti-A\(^{-}\) antibodies after treatment as compared to baseline. Serum total A\(^{-}\) and anti-A\(^{-}\) antibodies both increased, with a non-significant trend toward increased serum A\(^{-}\) after treatment, suggesting the possibility of increased antibody-mediated clearance of A\(^{-}\) from CSF to serum. Although very preliminary, these findings do tally with observations in AD transgenic mice, where anti-A\(^{-}\) antibodies given passively or allowing immune responses through vaccination (mouse) have been shown to reduce A\(^{-}\) deposition and prevent decline in some aspects of (mouse) cognitive function. Whether such a therapeutic approach will translate to the clinical arena remains to be seen. -AJL


ANNALS OF NEUROLOGY 2002;52(2):253-256

STUTTERING

Persistent stuttering: a neuro-anatomical explanation

Up to 5% of all children suffer from stuttering but the vast majority of these cases resolve spontaneously. In the 1% of people suffering from stuttering that does not spontaneously remit during puberty very little has been known about the anatomy of this disorder. Diffusion tensor imaging (DTI), a MRI technique, uses the diffusion properties of water to determine the orientation of white matter tracts. Using powerful analysis techniques associated with DTI such as fractional anisotropy of diffusion and voxel based morphometry white matter tract myelinification abnormalities have been detected in patients with multiple sclerosis. So using DTI, this current study tried to define the anatomical pathology of persistent stuttering. DTI of 15 patients with persistent stuttering was compared with images of 15 normal controls. Of all the participants only one patient in the stuttering group was left-handed. A significant difference between the two groups was observed in the area immediately below the laryngeal and tongue representation in the left sensorimotor cortex. This area has fibre tracts, which connect the premotor cortex (planning motor aspects of speech) with the sensorimotor representation of the oropharynx (articulation). Therefore the authors suggest that the normal temporal pattern of activation from the premotor to the motor cortex is disrupted. Previous PET studies on persistent stutterers have demonstrated an overactivation in the right hemisphere. In this study no structural abnormalities in the right hemisphere were demonstrated therefore allowing the authors to further speculate that this activation is not a cause of the stuttering but rather compensation for the structural damage in the left hemisphere. Such compensation has been demonstrated in aphasia. -TH

Sommer M, Koch M, Paulus W, Weißer C, Buchel C.
Disconnection Of Speech-Relevant Brain Areas In Persistent Developmental Stuttering.

LANCET 2002; 360: 380-83

PARKINSON’S DISEASE

A novel approach to treating parkinson’s disease

A fascinating and provocative paper in Science uses a gene therapy approach to change the phenotype of neurons in the subthalamic nucleus and by so doing not only ameliorate features of PD in the animal model but appears to convey neuroprotection. In this study Luo et al injected adeno-associated viral vectors containing the gene for glutamic acid decarboxylase (GAD), the enzyme involved in the synthesis of GABA, into the subthalamic nucleus (STN) of rats. This was not associated with any host immune response several months after injection when the gene was still present, but was associated with a successful switch in phenotype of the STN neurons from glutamnergic to GABAergic. This structure is the major nucleus driving the outflow of the basal ganglia (see ACNR 2.4., pp9-10) and in Parkinson’s disease (PD) the STN is thought to be overactive which explains the beneficial effects of deep brain stimulators and lesioning of this nucleus in advanced cases of this condition. Thus by changing the output from this nucleus from an excitation to inhibition, one would expect a benefit in terms of the signs of experimental PD - and this is indeed the case. So far so good, but this study has made one other observation and that is, that this change in phenotype actually protects nigral dopaminergic neurons from toxic damage with 6-OHDA - something that is not seen in cases where the STN is actually destroyed. In other words an inhibitory input from the STN to the substantia nigra protects cells, whilst no input - or if
you like, the lack of an excitatory input is without effect, suggest- ing that inhibition is necessary for cell rescue. This is remarkable, and although no explanation is given to account for this it is nev- ertheless of great interest. Thus this paper takes a well researched approach using viral vectors but uses a novel target and strategy which produces unexpected results...and as such may have pro- found implications for how we think about neuroprotecting the parkinsonian brain - RAB

REHABILITATION

Good vibrations for the treatment of unilateral neglect

Unilateral neglect hinders the rehabilitation of many people with right hemisphere brain damage. As treatment, therapists often try to encourage patients to look left and practice visual scanning tasks. However such training tends to be very task specific with gains shown only in the practiced tasks and even these improve- ments are only seen when patients have some awareness of their problem. Recently new treatments, which challenge the integration of vision, and other orienting systems that use proprioceptive or vestibular inputs, have reported successful results in the literature. It is thought that these treatments somehow recalibrate the ego-centric coordinate system that is responsible for the localisation of the body in space and of object position in relation to the body. One such treatment is neck muscle vibration, which perturbs both proprioceptive inputs and vestibular inputs that are important for building up representations of head position. A crossover study reported in the Journal of Neurology, Neurosurgery and Psychiatry by Schindler et al. has shown beneficial effects that generalised beyond the tasks practiced and were long lasting.

After a three week baseline 20 patients with unilateral neglect were given visual exploration training using a computer for 30 sessions. For the first 15 sessions half of the patients had their pos- terior neck muscles on the contralesional side stimulated with a vibrating disc while they were doing the training programme; the other half had visual exploration training only. After that the groups swapped treatments for the next 15 sessions. Perception of midline and exploration deficits in both visual and tactile modalit- ies were tested. In addition patients were assessed on a reading task and their carers were given a questionnaire to rate the inci- dence of everyday problems relating to neglect. Reduction in symptoms of neglect was achieved in both the trained visual and untrained tactile exploration mode after training combined with neck vibration. Reading performance improved and the incidence of everyday problems also reduced. The improvement was still evident two months after completion of the treatment. In contrast visual exploration training alone resulted in only small benefits in visual exploration training. There was no significant transfer effect to other tasks.

These results are good news especially since the treatment is easy and inexpensive to apply and does not require patients to have awareness of their condition. – AJT
Schindler I, Kerkhoff G, Karnath H-O, Keller I, Goldenberg G
Neck muscle vibration induces lasting recovery in spatial neglect.

Good Posture

Postural muscles are constantly battling against the relentless effects of gravity whenever we decide to stand upright. This bal- ancing act has to contend with any motor action we may decide to perform, always maintaining the postural equilibrium. Movements that threaten our stability are commonly accompanied by anticipatory changes in the activity of postural muscles and the CNS generates these patterns in a feed forward manner before the onset of the perturbation. Studies of these anticipatory postur- al adjustments (APAs) have been shown in healthy individuals to be affected by 3 major factors: expected magnitude and direction of the perturbation, voluntary action associated with the pertur- bation, and current postural state. These anticipatory and compen- satory mechanisms have been shown to be impaired in patients with stroke. Sliper and colleagues have confirmed this in their recent study but have also addressed the influence of a light manual support and the effects of changing the direction of the perturbation. A heterogenous group of stroke patients including cortical and subcortical lesions were studied against a group of age-matched controls. All patients had their stroke at least 6 months prior to the test. Subjects were required to release a weight held in the extended arm, either in front of them or to the side. Surface electrodes measured the activity of muscles in the limbs and trunk. Experiments with a light manual support, a touchpad to rest the paretic hand upon, were compared without such aids. APAs were asymmetric in the stroke group with reduced activity on the paretic side, but perhaps of more interest were the signs of ineffective modulation of APAs on the ‘non-paretic’ side. Support conditions did not seem to improve matters. It appears to be the case that the CNS in the patient with a hemiparesis avoids excessive use of muscles in the affected limb even when the task requires it, i.e. when subjects released the weight from the contra- lateral side. Successful rehabilitation needs to consider optimising these APAs, which if not corrected may in time become mal- adaptive, making the patient less able to cope with an ever- changing environment - JLR
Sliper H, Latsh ML, Rao N and Aruin AS.
Task-specific modulation of anticipatory postural adjustments in individuals with hemiparesis.
CLINICAL NEUROPHYSIOLOGY 2002: 113: 642-655

STROKE

How to find the hole in the heart?

Ten to 30% of the normal population harbours a patent foramen ovale (PFO). In young (<55 yrs of age) patients with ischaemic stroke a significant proportion are "cryptogenic", ie after an ade- quate search no definite cause for the stroke was found. Of these up to 40-50% may have a PFO - but it is uncertain whether the PFO was relevant or not.

We now know, from a carefully-designed European prospective follow up study of patients with cryptogenic stroke, that the risk of recurrent stroke (whilst taking aspirin) with an isolated PFO is around 0.5% per annum, and that if there is an associated atrial septal aneurysm (ASA) the risk rises to about 4% per annum. As yet we do not have clinical trial evidence to guide us as to whether antiplatelet therapy, anticoagulation or endovascular closure are the best and safest ways of preventing stroke recurrence. Trials are in the process of being set up.

The historical "gold standard" for detecting PFOs has been transoesophageal echocardiography (TOE) with echocontrast and a right to left shunt may be demonstrated during the Valsalva manoeuvre. However it is often difficult for the stroke patient to perform a Valsalva when they have a TOE camera down their throat. False negative tests may thus result.

The alternative is to use transcranial Doppler (TCD) with echocontrast and monitoring for air microembolic signals in the middle cerebral artery (MCA) during Valsalva. This approach gets around the mechanical problem of Valsalva during TOE but is less specific in that there is no direct visualisation of the shunt at car- diac level. The operator must follow strict guidance on the appear- ance of MCA microembolic signals within 10-15 cardiac cycles. Appearance of signals beyond this time is suggestive of shunting
Botox for stroke spasticity

It stands to reason that if spasticity in the muscles of the wrist and fingers after stroke contributes to disability then local treatment with intra-muscular botulinum toxin type A (Botox) should provide improvement. But the evidence base for this is limited. In a multicenter randomised double blind placebo-controlled trial comparing once-off set of Botox injections (200-240 units) into the wrist and finger muscles with placebo involving 126 patients, this issue was addressed. Patient eligibility in this study was a stroke, at least six months prior to randomisation, resulting in increased flexor tone in the hand or finger. Baseline assessment included patient choice of the most personally relevant disability (choice of 4 possibilities: pain, personal hygiene, dressing and limb position), and investigator rating of flexor tone. At six weeks post injection 62% of patients in the Botox group reported a significant improvement in their chosen disability compared to 27% improvement in the placebo group. This observed benefit was sustained for at least 12 weeks and in an open label extension phase of this study the Botox benefit persisted with subsequent injections and lasted for up to 24 weeks in some patients. Investigator-observed spasticity also differed between the experimental groups, providing evidence that the Botox was physiologically active. So with the observed decrease in spasticity, and reported improvement in ability, the working hypothesis has been shown to hold true. No adverse events were noted. Interestingly, stroke was most common among those men who did not respond to the question on sexual activity, and these men tended to be older, shorter, and had a higher level of CHD at the start of the study. In contrast however, fatal heart attacks were observed more commonly among men with infrequent sexual activity (Data regarding haemorrhagic stroke was not described presumably due to low numbers).

Although this study cannot explore the relationship between sexual activity and the triggering of an acute stroke, it should provide some reassurance for middle aged men that sexual activity is not a strong risk factor for ischaemic stroke, and may even provide some protection against heart attacks. -TF

Ebrahim S, May M, Ben Slhomo Y, McCarron P, Frankel S, Yarnell J, Davey, Smith G.

Sexual intercourse and the risk of Stroke

There has been little good science investigating whether sexual activity can cause stroke either acutely or over a long period of time. Some reports have linked haemorrhagic stroke with sexual activity, and there have been reports of increased risk of sudden death following vigorous exertion, although there is hitherto little known about the relationship between increased sexual activity and risks of ischaemic stroke.

Whether increased frequency of sexual intercourse increased or decreased risk for ischaemic stroke and coronary heart disease (CHD) was examined in this study. The Caerphilly study is an ongoing cohort study which has collected prospective information regarding multiple known and putative cardiovascular risk factors at the outset and recorded cardiovascular events over the subsequent 20 years. Men aged 45-59 were divided into 3 groups on the basis of their frequency of sexual intercourse at the start of the study. Less than once a month was described as ‘low frequency’; twice or more a week was described as ‘high frequency’, and the remaining men were put into an ‘intermediate’ group. Disappointingly, rates of ischaemic stroke were slightly lower for those men engaging in less frequent sexual intercourse, although no significant pattern was seen after adjustment for age, and known cardiovascular risk factors.

Interestingly, stroke was most common among those men who did not respond to the question on sexual activity, and these men tended to be older, shorter, and had a higher level of CHD at the start of the study. In contrast however, fatal heart attacks were observed more commonly among men with infrequent sexual activity. (Data regarding haemorrhagic stroke was not described presumably due to low numbers).

Although this study cannot explore the relationship between sexual activity and the triggering of an acute stroke, it should provide some reassurance for middle aged men that sexual activity is not a strong risk factor for ischaemic stroke, and may even protect against heart attacks. -TF

Ebrahim S, May M, Ben Slhomo Y, McCarron P, Frankel S, Yarnell J, Davey, Smith G.

Sexual intercourse and the risk of ischaemic stroke and coronary heart disease: the Caerphilly study.


Complimentary Journals Reviewed

We would like to thank the following publishers who have provided us with complimentary review subscriptions to their journals. For subscription details please contact the relevant publisher direct.

Cerebrovascular Diseases, Neuroepidemiology, Neuroembryology
S. Karger AG - Medical and Scientific Publishers,Allschwilerstrasse 10, CH - 4009 Basel, SWITZERLAND.
Tel. 0041 61 306 11 11, Fax. 0041 61 306 12 34, E-Mail: t.nold@karger.ch www.karger.com

Cerebral Cortex
Oxford University Press, Great Clarendon Street, Oxford, OX2 6DP. Tel. 01865 267154, Fax. 01865 267985.

Clinical Rehabilitation, Multiple Sclerosis
Arnold, 338 Euston Road, London NW1 3BH. Tel. 020 7873 6339, Fax. 020 7873 6325, E-Mail: arnoldjournals@hodder.co.uk,www.arnoldpublishers.com/journals

Current Opinion in Neurology
Lippincott Williams & Wilkins, 241 Borough High Street, London, SE1 1GB. Tel 0207 940 7564, Fax 0207 940 7530
Email. rmclachl@lww.co.uk, www.Lww.co.uk

Epilepsia
Blackwell Publishing, Commerce Place, 350 Main Street, Malden, MA 02148-5018, USA. Tel. 888 661 5800, Fax. 781 388 8270, www.blackwellscei.com/epi