Metabolic myopathies

Metabolic myopathies most often present with either (1) recurrent episodes of acute-onset and reversible muscle dysfunction or (2) progressive muscle weakness (Table 1). In general, episodic abnormalities, such as fatigue, pain, weakness and rhabdomyolysis, correlate well with our knowledge of the underlying defects in energy production (see Box on page 20). The mechanisms by which metabolic abnormalities bring about permanent weakness are poorly understood.

The clinical features of disorders of carbohydrate metabolism (glycogenoses), lipid metabolism (lipidoses) or electron transport chain (mitochondrial) function vary with age at presentation. Defects in cellular energy production in the newborn and infants often give rise to severe multisystem disorders but adult-onset disease is usually restricted to muscle. This review will focus on adult presentations of non-autoimmune disorders of muscle metabolism.

Presentations of metabolic muscle disease

The most characteristic presentation of metabolic myopathies is episodic muscle dysfunction. Premature fatigue, exertional muscle pain, contractures and rhabdomyolysis are seen in attacks of increasing severity. Those muscle metabolic diseases causing progressive weakness tend to have a more non-specific ‘myopathic’ phenotype and are less likely to give rise to attacks of rhabdomyolysis.

PREMATURE EXERTIONAL FATIGUE

Defects in carbohydrate metabolism result in an early rise in heart rate, respiratory rate and fatigue within minutes of starting intense exercise while disorders of lipid metabolism only become symptomatic after several hours of sustained submaximal exertion. Muscle disease is clearly not the commonest cause of decreased exercise tolerance which is more likely to be the result of deconditioning or an indicator of primary cardiac or pulmonary disease (Table 2). However, the muscle fatigue in metabolic myopathies has a different and unpleasant quality not attributable to muscle enzyme estimation in a specialist laboratory. With the notable exception of phosphofructokinase, episodic weakness is a feature of deficiencies in muscle-specific enzymes.

EXERCISE-INDUCED CRAMPS

Individuals with glycogenoses report exertional aching, burning or cramps in muscles which may reach a peak 6 hours after exercise. Continued exercise may result in the muscle ‘locking up’ due to the development of painful contractures. In contrast to true cramps, a metabolic muscle contracture is hard and tender, the pain is made worse by attempted stretching, the pain lasts for hours rather than minutes, and the EMG is silent.

Muscle pain in lipidoses is characteristically seen during or after sustained exercise but can also be unrelated to exercise, particularly during periods of fasting or dieting, exposure to cold, general anaesthesia and intercurrent infection. Affected individuals may find that the use of glucose tablets or chocolate improves exercise tolerance. In contrast to the glycogenoses, they do not develop painful contractures.

MYALGIA

Muscle pain during exercise is rarely seen in healthy individuals. While a common feature of metabolic muscle disease, it is relatively unusual for exercise-related myalgia in isolation to be the dominant symptom: individuals are more likely to report ‘weak legs’ or ‘jelly legs.’ Normal muscle characteristically gives rise to pain 24 to 48 hours after unaccustomed exertion, particularly in individuals who lead a sedentary lifestyle.

Rhabdomyolysis

Muscle pain in individuals with a metabolic myopathy is a harbinger of muscle fibre breakdown and is accompanied by a rise in plasma CK, dark urine and a concomitant risk of renal impairment. In between attacks the plasma CK often remains high in glycolytic disorders but usually returns to normal in disorders of lipid metabolism. However, the CK rise during an attack of rhabdomyolysis is often higher in lipidoses and is more likely to lead to renal failure.

Metabolic myopathies causing episodic muscle dysfunction

Individuals with episodic presentations of glycogenoses and lipidoses are clinically normal between attacks although with time they may become mildly weak. Attacks of rhabdomyolysis are treated symptomatically. Further investigations, especially muscle biopsy, are deferred until at least one month after the episode since muscle necrosis interferes with biochemical analyses and necrotic muscle fibres mask other histochemical findings. The main informative investigations in glycogenoses are raised serum CK levels, myopathic EMG findings and subsarcolemmal vacuoles on muscle histology. In contrast, laboratory investigations in the lipidoses are usually normal between attacks and the diagnosis depends on clinical suspicion leading to muscle enzyme estimation in a specialist laboratory. With the notable exception of phosphofructokinase, episodic weakness is a feature of deficiencies in muscle-specific enzymes.

Disorders of carbohydrate metabolism

Myophosphorylase deficiency (McArdle’s disease)

Myophosphorylase deficiency is the commonest defect affecting muscle carbohydrate metabolism. Myophosphorylase is responsible for glycogenolysis in the early stages of intense exercise so affected individuals report fatigue and pain within the first few minutes of strenuous activity. Continued exercise results in increasing pain which is initially deep and aching but rapidly...
Carnitine palmitoyltransferase II (CPT II) deficiency is one of the commonest causes of recurrent rhabdomyolysis. Affected individuals have no difficulties with short-lived exercise, which is largely dependent on glycogen, and can even participate in certain competitive sports. Difficulties arise with sustained exercise particularly in the fasting state. Attacks of myoglobinuria tend to be more severe in CPT II deficiency than in the second-wind phenomenon. Progressive presentations of metabolic muscle disease are difficult to distinguish from clinical grounds other myopathies such as the limb-girdle muscular dystrophies or polymyositis. In contrast to metabolic myopathies presenting with episodic dysfunction, rhabdomyolysis is rare but cardiac involvement is more frequent. The serum CK is usually raised, and the EMG is myopathic but the most characteristic finding is the histological observation of 'storage' vacuoles containing carbohydrate or lipid. In contrast to metabolic myopathies causing episodic weakness, most of the metabolic defects known to cause progressive muscle weakness are in enzymes that are not specific to muscle. The pathogenic significance of this striking biochemical dichotomy is unclear.

Acid maltase deficiency

Adult-onset acid maltase deficiency presents as mild proximal muscle weakness with characteristic respiratory involvement. Respiratory failure is the presenting symptom in up to 30% of affected individuals. The serum CK tends to be very high and 'irritable' features (spontaneous activity) are often noted on the EMG. The large cytoplasmic vacuoles seen on muscle sections are characteristic (Fig. 1) and enzyme levels can be measured directly in white blood cells, cultured skin fibroblasts or muscle.

Debranching enzyme deficiency

Given its metabolic proximity in glycogenolysis to myophosphorylase, it is somewhat surprising that debranching enzyme deficiency does not usually cause paroxysmal symptoms except in extremely weak individuals. Instead, it presents in the third or fourth decade with muscle wasting that is often distal more than proximal with occasional respiratory involvement, a pattern which can lead to a diagnosis of motor neuron disease although there is usually a concomitant mild sensory axonal polyneuropathy.

The EMG characteristically displays mixed myopathic and neuromyopathic features with prominent fibrillations and positive sharp waves. The serum CK tends to be very high and 'irritable' features are noted on the EMG. The large vacuoles seen on muscle sections are characteristic (Fig. 1) and enzyme levels can be measured directly in white blood cells, cultured skin fibroblasts or muscle.

Routine laboratory investigations, including muscle histochemistry, are usually normal in CPT II deficiency and VLCAD. Specialised serum biochemical analyses of fatty acid derivatives can help pinpoint the metabolic defect in suspected cases and CPT II activity can be measured in muscle tissue.

Metabolic myopathies causing progressive weakness

Progressive presentations of metabolic muscle disease are difficult to distinguish on clinical grounds from other myopathies such as the limb-girdle muscular dystrophies or polymyositis. In contrast to metabolic myopathies presenting with episodic dysfunction, rhabdomyolysis is rare but cardiac involvement is more frequent. The serum CK is usually raised, and the EMG is myopathic but the most characteristic finding is the histological observation of 'storage' vacuoles containing carbohydrate or lipid. In contrast to metabolic myopathies causing episodic weakness, most of the metabolic defects known to cause progressive muscle weakness are in enzymes that are not specific to muscle. The pathogenic significance of this striking biochemical dichotomy is unclear.

Acid maltase deficiency

Adult-onset acid maltase deficiency presents as mild proximal muscle weakness with characteristic respiratory involvement. Respiratory failure is the presenting symptom in up to 30% of affected individuals. The serum CK tends to be very high and 'irritable' features (spontaneous activity) are often noted on the EMG. The large cytoplasmic vacuoles seen on muscle sections are characteristic (Fig. 1) and enzyme levels can be measured directly in white blood cells, cultured skin fibroblasts or muscle.

Debranching enzyme deficiency

Given its metabolic proximity in glycogenolysis to myophosphorylase, it is somewhat surprising that debranching enzyme deficiency does not usually cause paroxysmal symptoms except in extremely weak individuals. Instead, it presents in the third or fourth decade with muscle wasting that is often distal more than proximal with occasional respiratory involvement, a pattern which can lead to a diagnosis of motor neuron disease although there is usually a concomitant mild sensory axonal polyneuropathy.

The EMG characteristically displays mixed myopathic and neuromyopathic features with prominent fibrillations and positive sharp waves. The serum CK tends to be very high and 'irritable' features are noted on the EMG. The large vacuoles seen on muscle sections are characteristic (Fig. 1) and enzyme levels can be measured directly in white blood cells, cultured skin fibroblasts or muscle.
neuropathic features and nerve conduction studies are often slow. Histochemistry reveals both subsarcolemmal and intermyofibrillar glycogen storage vacuoles.

Carnitine Deficiency

The importance of carnitine in metabolism is in the regulation of levels of acyl-CoA which can cause damage when present in excess. Typically the deficiency of carnitine is secondary to a defect in another enzyme system that results in the overproduction of acyl-CoA or in a deficiency of acyl-CoA clearance. These disorders can present with a progressive myopathy but this is usually associated with cardiomyopathy and encephalopathy, most strikingly coma after a period of starvation. Exacerbations and fluctuations occur but fatigue, exercise-related symptoms and myoglobinuria are usually absent. The diagnosis is supported by the presence of multiple lipid droplets on muscle histology (Fig. 1)

Acknowledgements

The author would like to thank Dr Alan Pestronk for comments on an earlier version of this article and for kindly allowing the photomicrographs to be reproduced from neuromuscular.jnl.

References & further reading


Correspondence Address

Dr Wojtek Rzakowicz, Dept. of Neurology, Box 134, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG

Psycho Social Impact of Epilepsy

Professional Development Seminar for specialist medical, educational and care professionals with an interest in the field of epilepsy.

The National Centre For Young People With Epilepsy – NCYPE is the major provider of specialised services including education, medical treatment and residential care to young people aged 5–19 who have epilepsy and a wide range of learning disabilities. 

Epilepsy affects approximately 1 in 200 people. It is well documented that the unpredictable nature of seizures has a profound effect on the quality of life for these young people. However, often it is the psychosocial difficulties that have a greater impact than the seizures themselves.

This one-day seminar will help provide a greater understanding of the wider implications of the diagnosis of epilepsy. The day will focus on particular areas of difficulty, such as education, employment, social and recreational activities, social integration, behavioural and emotional difficulties, independent living and childhood development

Cost: £75 including lunch and refreshments

Venue: NCYPE, Resource Centre, St Piers Lane, Lingfield Surrey, RH7 6PW

Time: 9.30 – 3.30

Date: Thursday 17th October 2002

For a booking form please contact Natalie Hopkins on 01342 831 237 or email nhopkins@ncype.org.uk. Alternatively, you can book online through our website at www.ncype.org.uk/resource_centre.htm

ROYAL COLLEGE OF PHYSICIANS
RECENT ADVANCES IN PREDICTING THE EFFECTS OF CLINICAL REHABILITATION

Tuesday 26 November 2002

at the Royal College of Physicians,
12 St Andrews Place, Regent’s Park, London NW1

This conference aims to review evidence that the response to rehabilitation can be predicted, to discuss the relative importance of different predictors and examine how the effects of rehabilitation can be separated from those of spontaneous recovery. The distinguished panel of speakers will be drawn from a number of different rehabilitation disciplines from across the UK.

Sessions will include:

✦ Mapping the determinants of a response to rehabilitation
✦ What is the evidence that specialist rehabilitation teams can reliably predict their patient’s outcomes?
✦ What are the positive and negative predictors of a response to rehabilitation- stroke traumatic brain injury; speech and language for people with dysphasia; amputation of a lower limb; multiple sclerosis
✦ Different approaches to predicting the effects of measures that are not drugs or surgical procedures
✦ What are the most fruitful research strategies for improving our capacity to predict the response to rehabilitation?

Further information is available from:
Conference Department, Royal College of Physicians
Tel: 0207935 3174 ext. 252 Fax: 020 7224 0729
Email: conferences@rcplondon.ac.uk
Website: www.rcplondon.ac.uk