EDITOR’S CHOICE

Improving the outcome of spinal cord injury

When the spinal cord is injured, astrocytes form scars that act as physical barriers to axon growth. In addition there is a chemical barrier: the extracellular space of such scars contains molecules that actively inhibit axon extension, including chondroitin sulphate proteoglycans. In this elegant study Stephen McMahon’s group, at King’s College London, investigate the effects of inhibiting chondroitin sulphate proteoglycans on recovery from a spinal cord injury. Adult rats received a dorsal column crush at C4, as well as an intrathecal injection of chondroitinase ABC, which degrades chondroitin sulphate proteoglycans. The controls were rats with no spinal injury and rats with a spinal lesion who received placebo. Chondroitinase ABC treatment increased the number of fibre bundles approaching and crossing the lesion (by cholera toxin B-subunit labelling of median nerve projections for ascending tracts and biotinylated dextran amine injected into the motor cortex for descending tracts). This increased anatomical connectivity was accompanied by a greater preservation of the dorsal column potentials evoked by electrical stimulation of the motor cortex. Most importantly, chondroitinase ABC treatment was associated with improved function on behavioural tasks such as beam or grid walking, as well as an adhesive tape removal task (!). Lastly, (and it is hard not to smile when this antique test appears after such technological wizardry) the analysis of footprint traces from rats with inky feet shows that chondroitinase ABC preserves normal gait after animals with spinal lesions, unlike controls. Chondroitinase ABC does not restore full anatomical connectivity across injured cord lesions. But it does so sufficient- ly to support a very real and useful improvement in function.

Acute stroke: no Nogo = go?

Nogo-A, originally known as NL-250, is a myelin-associated glycoprotein, originally characterised by Martin Schwab and colleagues, which inhibits neurite growth and causes growth cone collapse. A monoclonal antibody (mAb) to this protein, IN-1, was produced some years ago, and has been shown to promote CNS functional regeneration following various experimental lesions in neonatal and adult rats, as a consequence of axonal regeneration and/or neuroanatomical plasticity of uninjured pathways. The effects of IN-1 in acute stroke have now been examined.

Adult rats underwent unilateral middle cerebral artery occlusion (MCAO); some received IN-1 given by hybridoma xenograft, others a control mAb, others no treatment (all received cyclosporin immunosuppression, necessary to block rejection of the xenograft). Although stroke volume examined eight weeks postlesion did not differ between the groups, the animals receiving IN-1 showed 80% recovery of prelesion behavioural performance in a forelimb reaching task (grasping sucrose pellets), whereas the recovery in controls reached only 50% of baseline values. Anatomical studies showed that neuroanatomical plasticity paralleled functional recovery, with the development of increased projections from the intact primary motor cortex to the contralateral red nucleus (the corticorubral projection in rats is mostly ipsilateral).

Of course caution is appropriate in interpreting these findings, since there are many claims for treatments that improve outcome from MCAO in experimental animals, some of which have failed to translate to the clinical arena. However this study does suggest that the CNS has regenerative potential which if exploited, by providing a permissive environment for axonal growth by blocking growth inhibitory factors, may lead to meaningful functional recovery. A/JL Papadopoulos CM, Tsai S-Y, Alsbiei T, O’Brien TE, Schwab ME, Kortije GL. Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. ANNALS OF NEUROLOGY 2002;51(4): 433-441

Nerve repair

RECOMMENDED

Adult neural stem cells are useful

These two recent papers have demonstrated that adult neural stem cells do form functional neurons. There has been a long standing debate as to whether the cells labelled in the adult mammalian brain with markers of proliferation, such as BrdU, are of any functional significance. Last year it was demonstrated by Shors et al. that inhibiting dividing cells in the adult brain of rodents could affect trace memory formation (Shors TJ et al (2001) Nature...
Journal Reviews

410:314-315). However this was only circumstantial evidence to support the contention that adult neural stem cells (NSCs) can be incorporated into host circuits with functional effects. Now Gage and colleagues have shown that adult rodent NSCs can form functionally active neurons in vitro and Frisén and colleagues have done the same in vivo.

Song et al. took GFP labeled adult NSCs and studied them in vitro for their intrinsic electrical properties; capacity to respond to synaptic stimuli and the release of neurotransmitter. This is a beautiful, elegant and extensive study as it is typical from the Gage laboratory, and is a tour de force of scientific work. In all cases the GFP NSCs were shown to be similar to the primary embryonic neurons, although this was contingent on how the cells were grown for example the nature of the substrate used in culture and the use of BDNF.

The study by Frisén et al. took a different approach using BrdU to label the endogenous NSC population, and then trace their connections using specific viral vectors linked to GFP. This demonstrated that BrdU positive cells could be incorporated into circuits, both in the olfactory bulb and hippocampus, and that, in the case of the olfactory system, they responded to olfactory odour stimulation.

These two studies are important in highlighting that adult NSCs can differentiate into electrically active neurons and become incorporated into functional circuitry in the adult mammalian brain. The question that now needs answering is what regulates this process physiologically and what is its role?

Song H-J, Stevens CF, Gage FH. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. NATURE NEUROSCIENCE 2002 5: 438-445

NEUROPSYCHOLOGICAL REHABILITATION

Assessing money management in rehabilitation

The ability to carry out monetary transactions with competence is a crucial aspect of functional independence and therefore an important area for rehabilitation. In severe instances when a person is incapable of managing their own affairs an appointee may take over this role. But how is financial acumen to be assessed? The AFMS is presented as a means of tactically people carry out real-life transactions, including paying of bills and writing cheques. The AFMS protocol for investigating how effectively people carry out real-life transactions, including paying of bills and writing cheques. The AFMS is presented as a means of identifying problems and measuring change in response to intervention, not a basis for any specific treatment. A case study is provided but there is little by way of useful clinical information to correlate with monetary performance. However, the issue is important and very common in rehabilitation. For this reason this is a paper that many therapists will want to read, if only to stimulate them to producing something more structured in their own practice.

Disorders of everyday action may be caused by multiple impairments

Action in everyday contexts or ‘naturalistic action’ is belatedly attracting the attention of cognitive scientists. This paper is one of a number of publications to a journal special issue on Everyday Action and has interesting implications for clinicians who are regularly confronted with similar problems. Forde and Humphreys contrast the performance of two patients, HG and FK, who have difficulties carrying out basic tasks such as making a cup of tea, preparing a sandwich, and having difficulty in managing money. The authors argue that FK shows damage to a store of inhibition of a specific action once it had already been performed (rebound inhibition). In contrast, HG’s performance did not improve with written and visual prompts, but deteriorated when interrupted. Through a series of experimental manipulations the authors argue that FK shows damage to a store of action sequences and to an executive system for monitoring performance. This paper is useful to therapists on three accounts. First, the method of investigating deficiencies in everyday tasks can be adapted for routine clinical use. Second, the detailed analysis of actions illustrates the complexity of routine behaviours and thus militates against oversimplifications in interpretation. Third, it suggests that at least some forms of the disorder are amenable to intervention and this may be dependent on the nature of the underlying deficit.

Forde E M E, Humphreys G W. Dissociations in routine behaviour across patients and everyday tasks. NEUROCASE 2002: 8: 151-167

Picture this - I must remember to E.T. (phone home)

Evidence for effectiveness of intervention for cognitive deficits is often limited to single case experiments. The need for individualisation of treatment and the length of time that training takes limits the number of cases that can be studied in any one centre. A newly published memory training study has pooled resources from 7 centres in Europe so that the effect of using imagery as a strategy for improving memory in 21 brain-damaged patients was assessed. Imagery proved to be an effective and useful strategy for patients with mild to moderate memory impairment.

Patients with mild memory impairment such that it might prevent effectiveness and functioning at work were included in the study. Patients with severe memory loss or other cognitive deficits such as neglect, apraxia, agnosia and aphasia were excluded. The patients were randomly allocated to the imagery-training group or to a control group. The imagery group were taught to generate images of objects and actions rapidly until they could recall 8/10 items. They were also helped to apply imagery to their own daily living needs. The control group received the kind of memory training they would normally have received in their respective centre. This included various internal and external strategies such as face-name associations, keeping notebooks and calendars.

The design was ABA, with 4 weeks of baseline, ten weeks of training (3 times a week) and a three month follow-up period in which no training was given. A variety of memory assessments were used, imagery training was expected to lead to improved
Do seizures damage the brain?
This longstanding debate remains without a clear answer but the current study does move it forward. It has long been known that the hippocampus is damaged by seizures in animals and that severe acute insults can damage the hippocampus in humans. Seizures are compounded by complicating factors such as head injury from seizures and bouts of status epilepticus. What is not known is whether recurring seizures themselves cause a progressive deficit.

In this study 24 patients with well-localised TLE were followed from diagnosis and subjected to repeat MRI scans with hippocampal volumetric measurements after 3.5 years. The diagnosis of TLE was made on the basis of EEG and clinical criteria and all patients had a normal initial MRI. They were 30 +/- 14 years of age, so not in the usual age group for hippocampal sclerosis (HS) to be the cause of their seizures.

Epilepsy was generally mild and 15 patients had 0-1 generalised tonic clonic seizures (GTCS) and 9 had 2-8 GTCS during the follow-up period. One patient developed clear signs of hippocampal sclerosis on MRI and the others developed signs of hippocampal volume loss, of the order of 10-25%, which correlated strongly with the number of GTCS during follow-up.

This study provides evidence that even quite mild epilepsy can be damaging to the hippocampus and supports the theory that it is important to treat early. The hippocampus is, however, a uniquely sensitive structure and whether this can be extrapolated to extratemporal epilepsy or whether the generalised epilepsies carry the same kinds of risks is even less clear.

The finding that surgery should be accompanied by a reduced risk of cardiovascular emergencies in epilepsy patients. Surges of sympathetic outflow have been postulated to occur during seizures, which may then contribute, to the pathophysiology of SUDEP. Temporal lobe epilepsy is particularly troublesome in causing changes in autonomic activity and case reports of ictal associated tachycardia or bradycardias are frequently documented. Interestingly interictal changes of sympathetic cardiovascular tone have also been demonstrated.

To stop frowning on EEGs………………
Presurgical localisation of epilepsy hinges on accurate recording of electrographic seizure onset. A number of factors may hinder recordings and commonly artefact arising from scalp muscles from ictal motor activity is responsible. Traditionally this is to insert electrodes intracranially. The authors reduced scalp muscle activity by injecting botulinum-A (BTX) 100 units between temporalis and frontalis muscles. A week later patients underwent EEG and were asked to perform various facial contortions. If there was still significant artefact on EEG, a further 50-100 units were injected into muscles responsible.

Twenty-four seizures were recorded in 3 patients, 12 before and after BTX injection.

They were reported blind. Prior to BTX only one seizure was localisable (3 localisable) whereas afterwards 8 were localisable. There were no adverse effects and muscle activity returned to normal after 8, 11 and 15 weeks.

The authors should be congratulated on lateral thinking to try and solve a problem with a benign, readily available procedure, potentially avoiding highly invasive intracranial EEG. How widely applicable this will be remains to be seen.

Botulinum toxin-induced paralysis of frontotemporal muscles improves seizure focus localisation.

NEUROLOGY
2002:58:246-249

Stopping heart stop
The central nervous system has well-established effects on the heart. A hierarchy of autonomic control is recognised involving cortical levels of modulation. It is therefore perhaps not surprising that epilepsy can result in changes of cardiovascular physiology. However, the precise dynamics are not well understood and need to be elucidated in view of their potential role in sudden unexpected death in epileptic patients (SUDEP). Surges of sympathetic outflow have been postulated to occur during seizures, which may then contribute, to the pathophysiology of SUDEP. Temporal lobe epilepsy is particularly troublesome in causing changes in autonomic activity and case reports of ictal associated tachycardia or bradycardias are frequently documented. Interestingly interictal changes of sympathetic cardiovascular tone have also been demonstrated.

To address this relationship further, Hilz and colleagues have studied autonomic parameters before and after surgery in 18 TLE patients. Variability of heart rate and blood pressure were determined (power spectral analysis) incorporating changes attributable to respiration.

Each signal had a combination of high and low frequency analysis. Calculation of baroreceptor sensitivity was also performed derived from the relationship between these parameters. The standard measures of cardiovascular function did not change. Low frequency components of HR and BP showed a clear reduction of over 40% following surgery. Baroreceptor sensitivity also changed. This supports the conclusion that sympathetic tone is augmented in TLE patients. This is a reassuring study and implies that surgery should be accompanied by a reduced risk of cardiovascular emergencies in epilepsy patients.

Hilz A, Devinsky O, Maurer A and Dutsch M.
Decrease of sympathetic cardiovascular modulation after temporal lobe epilepsy surgery.
BRAIN
2002:125:985-995

Independent COMparisons of Interferons - INCOMIN:
Alternate day Interferon beta-1b versus weekly Interferon beta-1a

In a world where evidence based medicine requires very large randomised double blind placebo controlled studies, direct comparisons between two similar drugs from different manufacturers are rare. Even more so if such a study is completely independent of any sponsorship or links in some form or other to one of the firms concerned. It is therefore pleasing to see that the INCOMIN trial study group has been able to undertake a direct comparison study of two of the three available interferons for relapsing remit-
ting multiple sclerosis as they are currently licensed, guiding our prescription habits in an evidence based manner, albeit with relatively small numbers. The basic protocol employed in this independent study was a 2-year prospective randomised multi-centre study with 96 patients in the beta-1b, alternate day administration, (Betaseron) limb and 92 patients in the beta-1a, weekly (Avonex) limb of the study. Outcome measures were proportion of patients remaining relapse free, clinically and radiologically (no new proton density/T2 lesions). In those receiving alternate day therapy 51% remained relapse free compared to 36% receiving weekly treatment (relative risk 0.76, p=0.03) and similarly 55% developed no new radiological lesions compared to 26% (relative risk 0.6, p=0.0003). On these grounds alternate day therapy is superior in effect. However, unsurprisingly injection site reactions were significantly more common in the alternate day group but this did not impact on compliance and could be minimised by improved injection technique, the authors suggest. Significantly more patients in the alternate day group generated neutralising antibodies, which adds to the controversy of the role of these antibodies. The observed increased effectiveness in the presence of increased antibody formation would support the argument that these antibodies do not have any effect on the treatment response.

The study design does not allow comparisons to be drawn about which agent is more potent (and clearly does not involve the third commercially available interferon-beta, Rebif) but does suggest that the frequency of administration maybe crucial. -TH

Type 1 diabetes mellitus (DM) and multiple sclerosis (MS) in Sardinia

This relatively simple cohort epidemiological study undertaken in Sardinian families with MS reveals a surprising finding when compared to studies on other populations but does raise some interesting observations about the genetics of MS in this population. Sardinians are at high risk of developing MS and DM. This study demonstrates that epidemiologically there is a link in this population between these two autoimmune diseases, with DM being three-fold more prevalent in patients with MS compared with their healthy siblings but importantly DM was found to be five-fold more prevalent than the general population. At first sight this observation may be at odds with most Northern European studies with prevalent than the general population. Nevertheless, the most preva-

Complimentary Journals Reviewed

We would like to thank the following publishers who have provided us with complimentary review subscriptions to their journals. For subscription details please contact the relevant publisher direct.

Cerebrovascular Diseases, Neuroepidemiology
S. Karger AG - Medical and Scientific Publishers, Allschwilerstrasse 10, CH - 4009 Basel, SWITZERLAND. Tel. 0041 61 306 11 11, Fax. 0041 61 306 12 34, E-Mail: t.nold@karger.ch www.karger.com

Cerebral Cortex
Oxford University Press, Great Clarendon Street, Oxford, OX2 6DP. Tel. 01865 267154, Fax. 01865 267985.

Clinical Rehabilitation, Multiple Sclerosis
Arnold, 338 Euston Road, London NW1 3BH. Tel. 020 7873 6339, Fax. 020 7873 6325, E-Mail: amarkal@hodder.co.uk, www.arnoldpublishers.com/journals

Current Opinion in Neurology
Lippincott Williams & Wilkins, 241 Borough High Street, London, SE1 1BG. Tel 0207 940 7564, Fax 0207 940 7530

Email: mosch@lww.co.uk, www.Lww.co.uk

Epilepsia
Blackwell Publishing, Commerce Place, 350 Main Street, Malden, MA 02148-5018, USA. Tel. 888 661 5800, Fax. 781 388 8270, www.blackwellscience.com/epi
mal healthy individuals and those with MS (reduced in number in interferon-beta treatment). It identifies no single immunodominant epitope on MOG and demonstrates that TCCs from healthy and MS sibs produce different cytokine profiles on stimulation. The authors speculate that the loss of regulatory control of these MOG reactive T cells could result in demyelination. Unfortunately the cohort studied in this paper was too small to draw conclusions about the pathogenesis of MS, except to identify this as a protein worthy of further investigation. -ALC

Chips in Multiple Sclerosis

Gene chips are the technological cutting edge of gene expression analysis. One chip allows the simultaneous analysis of expression of tens of thousands of genes. They are relatively easy to use, but their results present a considerable bioinformatics headache! Other gene expression techniques (such as SAGE) are harder to use, but have the advantage over chips that they can pick up unknown genes, whereas chips rely on a library of known genes and expressed sequence tags.

Lock et al. used Affymetrix chips to compare genes expressed in CNS lesions from 4 patients with MS, and two controls without neuropathology. The four MS samples were classified histologically.

Differences in gene expression between MS and control samples were identified. Of the genes that were up regulated, a number of neuron specific genes such as proteolipid protein and neuronal kinase and various growth factors including insulin growth factor-1 and G-CSF. In the chronic lesions, integrin αL was elevated. Various gene transcripts associated with Th2 or allergic response were also elevated including the histamine receptor H1, IgE receptor and IgG Fc receptor. In addition a number of matrix metalloproteinases (MMP) were elevated, IL-17 and various neuroendocrine molecules.

One of these proteins was tested therapeutically using an animal model of demyelination - experimental allergic encephalomyelitis (EAE). G-CSF (elevated 13 fold in active compared with chronic lesions) given prior to onset of EAE prolonged time to disease onset and reduced the severity of the acute phase of the disease. Also the role of IgG Fc receptor was tested, as its expression was elevated in chronic lesions; in Fc− receptor knockout mice the chronic phase of EAE became less severe.

This study demonstrates the power of gene chip analysis to monitor the dynamics of gene expression changes between tissues, and will probably be the best way to investigate the mechanisms of action of the susceptibility alleles identified by genome studies. Also, such studies may identify potential therapeutic targets for disease modification in MS. -ALC

Neuromuscular Function and Disease

Basic Clinical and Electrodiagnostic Aspects

This new two-volume reference offers a practical approach to diseases of the muscle, neuromuscular junction, and spinal cord. Volume I emphasises the pathophysiology of neuromuscular disease and its assessment using electrophysiological and radiological tools. Volume II focuses on the application of electrophysiological testing to the diagnosis and management of specific neuromuscular disorders.

If you want comprehensive coverage of...
...all neuromuscular disorders and describes normal function...both basic science and clinical practice...both adult and paediatric conditions...MRI, electrodiagnosis and genetic testing...then you need Neuromuscular Function and Disease, by William F Brown MD, Charles F Bolton, MD and Michael J Aminoff, MD

0 7216 8922 1 / May 2002 / Hardback / Saunders / £295.00

Visit http://int.elsevierhealth.com/neurology for full details of these and well over 150 other neurology titles - from a monograph on myelin disorders to a choice of comprehensive reference works.

Here are just a few of the titles you'll find:

Practical Guide to Epilepsy
Marston, 0 7506 4627 7, Nov 02, Paperback, 368 pages Butterworth Heinemann, £32.50

Motor Neuron Disease
Ralph W Kanz, 0 7020 2528 3, July 2002, Hardback, 206 pages / 26 illus Saunders £39.99

The latest developments — including genetics — clearly explained

Behavioral Neurology: Practical Science of Mind and Brain
Howard Kertesz, 0 7506 7228 5, Feb 2002, Hardback, 452 pages / 53 illus Butterworth Heinemann £65.00

Neuromuscular Disorders in Infancy Childhood and Adolescence
Ranis T Durair, MD, Darryl C De Vries, H Royden Jones 0 7506 7190 4, May 2002 Hardback, Butterworth Heinemann £205.00

The only comprehensive pediatric reference available

Managing Epilepsy & Co-Existing Disorders
Oren Devinsky, Alan R Einhorn, 0 7506 7542 1, January 2002, Hardback, 576 pages, Butterworth Heinemann £60.00

Unique — the only text on the subject

Carpal Tunnel Syndrome and Other Disorders of the Median Nerve, 2nd Edition
Jose Ochoa, Richard Rosenbaum, 0 7506 7514 5, May 2002 Hardback, 464 pages / 48 illus, Butterworth Heinemann £39.00

“Recommended” — Annals of Internal Medicine

3 Easy ways to order!
1. Telephone customer services: +44 (0) 20 8308 5760 (anytime between 0800 and 1800 Mon-Fri)
2. Buy online: www.elsevierhealth.com Free P & P throughout Europe when you buy online!!!
3. Fax customer services: +44 (0) 20 8308 5702

Please quote reference MNEACNR when making your order