Review Article:
Neurological associations of coeliac disease

Interview:
Dr Oliver Sacks & Dr Paul Cox - The Parkinsonism dementia complex of Guam and flying foxes

Rehabilitation Article:
Mood and affective problems after traumatic brain injury
Disease modifying therapy for relapsing-remitting multiple sclerosis

- Reduces relapse rates
- Maintains efficacy in the long-term
- Unique MS specific mode of action
- Reduces disease activity and burden of disease
- Well-tolerated, encourages long-term compliance

COPAXONE® WORKS, DAY AFTER DAY, MONTH AFTER MONTH, YEAR AFTER YEAR

Confidence in the future
COPAXONE® (glatiramer acetate) PRESCRIBING INFORMATION

Presentation
Glatiramer acetate 20mg powder for solution with water for injection.

Indication
Reduction of frequency of relapses in relapsing-remitting multiple sclerosis in ambulatory patients who have had at least one relapse in the preceding two years before initiation of therapy.

Dosage and administration
20mg of glatiramer acetate in 1ml water for injection, administered sub-cutaneously once daily. Initiation to be supervised by neurologist or experienced physician. Supervise first self-injection and for 30 minutes after.

Children
Not recommended under 18 years of age.

Elderly
No specific data.

Impaired renal function
No specific studies. Monitor renal function during treatment. Consider possibility of deposition of immune complexes.

Contra-indications
Known allergy to glatiramer acetate or mannitol (excipient).

Special warnings and precautions
Subcutaneous use only. One or more of vasodilation, chest pain, dyspnoea, palpitations or tachycardia may occur within minutes after injection. These generally resolve spontaneously after a short time. If severe, treat symptomatically. Caution in patients with pre-existing cardiac disorders. Review patients regularly. Rarely, convulsions and/or anaphylactic or allergic reactions. Rarely, hypersensitivity (bronchospasm, anaphylaxis or urticaria). If severe, treat appropriately and discontinue Copaxone.

Interactions
No formal evaluation. Increased incidence of injection-site reactions with concurrent corticosteroids. Theoretical potential to affect distribution of protein-bound drugs, therefore concomitant use of these should be monitored.

Pregnancy and lactation
Safety in pregnancy not established. Consider if expected benefit outweighs risk to foetus. No data on excretion in human milk. Safety in pregnancy not established. Consider if expected benefit outweighs risk to foetus. No data on excretion in human milk.

Undesirable effects
Severe, treat symptomatically. Caution in patients with pre-existing cardiac disorders. Review patients regularly. Rarely, convulsions and/or anaphylactic or allergic reactions. Rarely, hypersensitivity (bronchospasm, anaphylaxis or urticaria). If severe, treat appropriately and discontinue Copaxone.

Pregnancy and lactation
Safety in pregnancy not established. Consider if expected benefit outweighs risk to foetus. No data on excretion in human milk.

Undesirable effects
Not established. Consider if expected benefit outweighs risk to foetus. No data on excretion in human milk.

Overdose
Monitor, treat symptomatically.

Pharmaceutical Precautions
Store Copaxone in refrigerator (2° to 8°C). May store in refrigerator after reconstitution for up to eight hours.

Legal Category: POM

Package Quantity and Basic NHS Cost

Product Licence Number
10921/0019

Further Information
Store Copaxone in refrigerator (2° to 8°C). May store in refrigerator after reconstitution for up to eight hours.

References:
Controls seizures

Has no effect on shopping

Lamictal (lamotrigine)

Presentation: Pale yellow tablets containing 25mg, 50mg, 100mg and 200mg lamotrigine, and white dispersible/chewable tablets containing 2mg, 5mg, 25mg and 100mg lamotrigine.

Uses: Lamictal is indicated for the treatment of epilepsy in adults and children over 12 years for partial epilepsy with or without secondarily generalised tonic-clonic seizures and in primary generalised tonic-clonic seizures. Seizures associated with Lennox-Gastaut syndrome.

Dosage and Administration: Initial dose and subsequent dose escalation should not be exceeded to minimise the risk of rash. Slowly increase: Initial dose is 25mg daily for two weeks, followed by 50mg daily for two weeks. Dose should be increased by a maximum of 50-100mg every 1-2 weeks until optimal response. Usual maintenance dose is 100-200mg/day in one dose, or two divided doses.

Add-on therapy: Adults and children over 12 years: To be dosed on a mg/kg basis until the adult recommended titration is reached. Add-on to sodium valproate with or without any other AED, initial dose 0.15mg/kg bodyweight/day for two weeks, followed by 25mg/day for two weeks. Dose should then be increased by a maximum of 25mg/kg every 1-2 weeks until optimal response. Usual maintenance dose is 3-5mg/kg/day given in two divided doses. Weight of child should be monitored and dose adjusted as appropriate. If calculated dose is 2mg/kg/day then 2mg may be taken on alternate days for the first two weeks. See Section 4.2. Starter packs covering the first four weeks treatment are available for adults and children over 12 years. When the pharmacodynamic interaction of any AED with Lamictal is unknown the dose escalation for Lamictal and concurrent sodium valproate should be used. Effective price: No dose adjustment required.

Contraindications: Lamotrigine is contraindicated in:

- Hypersensitivity to lamotrigine.
- Contra-indications: Elderly patients: No dose adjustment required.
- Pregnancy: Lamictal was not carcinogenic, mutagenic, teratogenic or shown to impair fertility in animal studies. There are insufficient data available on the use of Lamictal in human pregnancy to evaluate its safety. Lamictal should not be used during pregnancy unless, in the opinion of the physician, the potential benefits of treatment to the mother outweigh any possible risk to the developing fetus. Advice: As with all AEDs, the individual response should be considered.

Side and Adverse Effects: Lamictal is a trade mark of the GlaxoSmithKline Group of Companies.

Further information is available from GlaxoSmithKline UK Limited, Stockley Park West, Uxbridge, Middlesex UB11 1BT.

©GlaxoSmithKline Group 2002.

For further information or to register a patient, please phone Customer Services Freephone 0800 221441.

Welcome to another edition of ACNR which we hope continues to combine a range of interesting and readable articles and items. This issue begins with an excellent topical review on the neurological complications of coeliac disease by Adrian Wills and Pengiran Tengah. However, one thinks about the true incidence of these associations, it is important to remember coeliac disease in a range of neurological conditions, although the response to treatment is often disappointing.

Following on from this controversial issue comes another on the cause of the ALS-parkinsonian-dementia complex found in the Guam peninsula. The development of this isolated cluster of neurological disease has generated much interest from epidemiologists and neurologists alike and with it a range of aetiological theories, of which the latest developed by Cox and Sacks has recently been published in Neurology and involves the eating of flying foxes. Huw Morris provides an interesting commentary on this article, in particular to a series of questions and answers that we posed and obtained from the principal authors. Huw spent some time in Guam and is able to rely on his own experiences and local knowledge and contacts to provide the interesting counterpoint that forms his commentary.

We also have a useful update on the surgical treatment of dystonia using stereotactic surgery, an area that is looking exciting and may be of great therapeutic potential, especially given the paucity of effective medical therapies. Obviously proper trials need to be done to verify the approach (such as the randomised study already started by Professor Aziz), to prevent the adoption of a therapeutic strategy based on anecdote. We also have an excellent review from Fergus Gracey on the affective problems of traumatic brain injury, a topic that is often neglected, and an excellent historical account of Phineas Gage by Larner and Leach.

There is our usual collection of anatomy primer, journal reviews, conference and book reviews. Our regular Management feature is unfortunately delayed this issue – as we go to press, Gillian Hall is imminently expecting her second child. However, it will be back in September. Talking of babies, we’d like to congratulate our Rehabilitation Editor, Stephen Kirker, on the birth of baby Tom. Finally, we welcome Patrick Chinnery to the journal review team. So there it is, another action packed issue which you can read at leisure, now that those tense sporting moments which dominated last month have finally passed!

Roger Barker
AdvancesinCNR@aol.com

Welcome to another edition of ACNR which we hope continues to combine a range of interesting and readable articles and items. This issue begins with an excellent topical review on the neurological complications of coeliac disease by Adrian Wills and Pengiran Tengah. However, one thinks about the true incidence of these associations, it is important to remember coeliac disease in a range of neurological conditions, although the response to treatment is often disappointing.

Following on from this controversial issue comes another on the cause of the ALS-parkinsonian-dementia complex found in the Guam peninsula. The development of this isolated cluster of neurological disease has generated much interest from epidemiologists and neurologists alike and with it a range of aetiological theories, of which the latest developed by Cox and Sacks has recently been published in Neurology and involves the eating of flying foxes. Huw Morris provides an interesting commentary on this article, in particular to a series of questions and answers that we posed and obtained from the principal authors. Huw spent some time in Guam and is able to rely on his own experiences and local knowledge and contacts to provide the interesting counterpoint that forms his commentary. We also have a useful update on the surgical treatment of dystonia using stereotactic surgery, an area that is looking exciting and may be of great therapeutic potential, especially given the paucity of effective medical therapies. Obviously proper trials need to be done to verify the approach (such as the randomised study already started by Professor Aziz), to prevent the adoption of a therapeutic strategy based on anecdote. We also have an excellent review from Fergus Gracey on the affective problems of traumatic brain injury, a topic that is often neglected, and an excellent historical account of Phineas Gage by Larner and Leach.

There is our usual collection of anatomy primer, journal reviews, conference and book reviews. Our regular Management feature is unfortunately delayed this issue – as we go to press, Gillian Hall is imminently expecting her second child. However, it will be back in September. Talking of babies, we’d like to congratulate our Rehabilitation Editor, Stephen Kirker, on the birth of baby Tom. Finally, we welcome Patrick Chinnery to the journal review team. So there it is, another action packed issue which you can read at leisure, now that those tense sporting moments which dominated last month have finally passed!

Roger Barker
AdvancesinCNR@aol.com
1.0 reason...

...to view our new agent

The first 1.0 molar Gd-based MRI contrast agent

Gadovist® 1.0
gadobutrol

Prescribing Information.

GADOVIST® 1.0 (gadobutrol)

Presentation: Glass vials containing 15 or 30ml, or glass pre-filled syringes containing 7.5 ml, of gadobutrol 1.0mmol/ml solution for injection (604.72mg gadobutrol/ml).

Uses: Contrast enhancement in cranial and spinal MRI.

Dosage and administration: Give required dose intravenously as bolus injection. Patient should be recumbent during administration. MRI can start immediately after injection. Optimal opacification usually occurs within 15 minutes of injection. Enhancement lasts up to 45 minutes. Particularly suitable for T1-weighted scanning sequences. Observe patient for 30 minutes after administration. Adults: 0.1mmol/kg body weight (equivalent to 0.1ml/kg body weight). A further injection of 0.2mmol/kg body weight may be given within 30 minutes of first injection. Dose must not exceed 0.1mmol/kg body weight in patients with impaired renal function.

Children (under 18 years old): Specific data not available. Use only after careful evaluation of benefit versus risk.

Contraindications:

- Hypersensitivity to ingredients.

Warnings:

- Use during pregnancy only if essential. Appropriate drugs and instruments must be readily available. In patients with an allergic disposition or severe cardiovascular disease, carefully evaluate risk-benefit ratio. Delayed reactions possible for several days. Use with caution in patients with a low seizure threshold. If injecting into a small lumen reddening or swelling may occur. Side effects: Hypersensitivity reactions, rarely anaphylactoid reactions ranging to shock. Delayed allergic reactions possible. Nausea, vomiting, dizziness, shortness of breath, headaches, vasodilatation, hypotension and allergy-type dermatitis reactions reported occasionally. Short-lasting mild to moderate feelings of coldness, warmth or pain at injection site. Convulsions, chills and syncope have been reported. Transient sensations of taste or smell may occur during or immediately after injection. Possible tissue pain on paravascular injection. Legal classification: POM. Basic NHS Price: 1 x 30ml vial £255.00, 1 x 15 ml vial £137.50, 1 x 7.5 ml pre-filled syringe £63.75. PL Numbers: 0053/0270 (vials), 0053/0296 (pre-filled syringes). PL Holder: Schering Health Care Limited, The Brow, Burgess Hill, West Sussex RH15 9NE. ©Gadovist is a registered trademark of Schering AG. PI revised: 2 May 2002. Date of preparation: June 2002. L020608
Neurological associations of coeliac disease

Introduction

Coeliac disease (CD) has attracted much interest in recent years because of a putative association with neurological disorders. Classically, CD is known to be an inflammatory disease of the small bowel mucosa as a result of sensitivity to gluten, a component of wheat, barley and rye. The treatment consists of a strict gluten-free diet (GFD) which results not only in symptomatic improvement but also restoration of the normal mucosal architecture. However it is increasingly recognised that CD can have atypical presentations. Cooke and Smith1 first described the neurological associations of CD in 1966. Since then numerous neurological disorders have been described in association with CD predominantly epilepsy, ataxia and neuropathy. The nature and mechanism of these associations remain unclear. This review will attempt to describe some of the more commonly described neurological disorders seen with CD and the basis of an association, if indeed there is one.

Coeliac disease

The concept of incidence and prevalence of CD has changed greatly over the years. What was once thought to be a childhood illness typically presenting with malnutrition and abdominal symptoms is now acknowledged to be a condition of all ages that may also present with atypical and often subtle symptoms. The notion of an ‘iceberg’ of CD has been used to describe the majority of patients with CD who remain undiagnosed because of asymptomatic, occult or latent disease. Furthermore, population screening studies have revealed that CD is a common condition with a prevalence of at least 1:82 in certain populations.

Patients with a genetic susceptibility to gluten may have no intestinal abnormalities on small bowel biopsy. The precise mechanism for the activation of gut inflammation by gluten is not known although it is presumed to be immunological. Immune mechanisms such as the deposition of circulating immune complexes in other organs are also thought to cause the extra-intestinal manifestations of gluten sensitivity. Dermatitis herpetiformis (DH), characterised by IgA deposition in the papillary dermis, is a blistering skin condition (See Figure 1) that exemplifies an extra-intestinal manifestation of gluten sensitivity. There is robust immunological and genetic data that DH and CD are closely related conditions. Although less than 10% of DH patients have gastrointestinal symptoms, they are all said to have gluten-sensitive enteropathy.

Serological testing

Serological testing for CD has been greatly refined in recent years. Immunological approaches now available include screening for antireticulin antibodies (ARA), IgA and IgG antigliadin antibodies (AGA), endomyosal antibodies (EMA) and tissue transglutaminase antibodies (TTG). EMA has been shown to be better than AGA in terms of both sensitivity and specificity. In one study the positive predictive value of EMA was 100% compared to only 28% for IgA AGA. Further studies have shown that IgG AGA is even less reliable than IgA AGA in identifying CD with one study showing the positive predictive value of the former to be 0%. The presence of positive coeliac antibodies with normal small bowel architecture remains problematic. Follow-up of patients with normal small bowel architecture and positive coeliac antibodies has shown that positive ARA is a good predictor for later development of the disease when compared to AGA, particularly the IgG subclass.

Epilepsy

The association of epilepsy and CD has been demonstrated in a number of studies. The nature of this association remains unclear. Interestingly, a number of studies, mainly in Italy, have described a further association between CD, epilepsy and cerebral calcifications. Studies in Ireland and Finland have not shown these calcifications suggesting that this may be a geographically or ethnically restricted finding.

Ataxia

The patients originally described by Cooke and Smith in 1966 had a variety of diagnoses. Of the 16 patients described, the majority were found to have a predominantly sensory ataxia although three were also said to have a cerebellar ataxia. Since then there have been varying reports in the literature regarding the association of cerebellar (rather than sensory) ataxia and CD. Vitamin E deficiency and cerebellar ataxia has been described in CD with an improvement following vitamin E therapy.

Three groups have shown an increased incidence of CD in series of patients with idiopathic cerebellar ataxia. Hadjivassiliou et al proposed the term ‘gluten ataxia’ to describe a group of their patients with idiopathic ataxia, positive AGA antibodies and a HLA genotype (DQw2) appropriate for coeliac disease. They further proposed a mechanism of immune-mediated neuronal damage triggered by gluten. In the light of their reliance on IgG AGA as a screening tool these concepts need to be interpreted with caution. The common HLA haplotype (also seen by Burk and co-workers) is a noteworthy finding that merits further attention. Interestingly a recent study by Bushara and co-workers showed raised AGA in patients with both hereditary ataxia (9 of 24) and sporadic ataxia (7 of 26) and proposed the term ‘gluten ataxia’ to describe a group of their patients with idiopathic ataxia, positive AGA antibodies and a HLA genotype (DQw2) appropriate for coeliac disease. They further proposed a mechanism of immune-mediated neuronal damage triggered by gluten. In the light of their reliance on IgG AGA as a screening tool these concepts need to be interpreted with caution.

Figure 1 - Blister on the elbow of a patient with dermatitis herpetiformis. Reproduced courtesy of Professor Lionel Fry, Imperial College, London.
Other neurological associations

There have been a few descriptions of patients with CD and peripheral neuropathy, both axonal and demyelinating, but no clear effect of gluten on the neuropathy has been established8,9. Other case reports in the medical literature have included such diverse conditions as CNS vasculitis10,11, brainstem encephalitis12, dementia13 and chronic progressive leukoencephalopathy14. Some studies have suggested an association with migraine whereas others have not.

Conclusions

There appears to be some evidence of an association between CD and certain forms of epilepsy but the basis of association with other neurological syndromes is less certain. At present, the scanty available data on neurological associations of CD is extremely heterogeneous with no universally acceptable scientific explanation for a causative effect. Given that CD is common, one possibility is that certain neurological “associations” are purely coincidental. Alternatively, similar HLA haplotypes may confer an increased likelihood of autoimmune disease as exemplified by the increased incidence of hypothyroidism15 and Type 1 diabetes mellitus16 in CD.

Another possible explanation is malabsorption causing vitamin and trace element deficiency as there are descriptions of patients whose neurological illnesses have improved with treatment of their CD. Besides vitamin E and folic acid deficiency as mentioned previously, tetany17 and myopathy18 caused by calcium deficiency have also been described. Although this does not satisfactorily explain patients in whom no vitamin deficiency is found19,20 or in whom vitamin replacement has no effect21-23, this possibility should still be carefully considered in CD patients who develop neurological illness. As yet, no studies have effectively addressed the role of trace vitamin deficiency (e.g. niacin, riboflavin and thiamine) in the development of neurological complications.

Gluten neurotoxicity, as suggested by Hadjivassiliou and co-workers24, has been postulated as a mechanism to explain the apparent association of gluten sensitivity with various neurological disorders. In DH, gluten exposure is potentially greater than in CD as patients whose dermatological symptoms are controlled on dapsone may continue to consume gluten. Recent work by Wills et al25 failed to demonstrate an increased prevalence of neurological complications of DH.

Clearly, further more detailed investigation is required into this disease. We propose large studies looking for the prevalence of neurological conditions in CD and DH, and further investigation of the role of auto-immunity, particularly susceptible HLA groups, in neurological diseases seen with CD. However we would recommend more stringent antibody testing in neurological patients given the poor predictive value of some celiac antibodies particularly IgG AGA.

Acknowledgements

We are grateful to Professor Lionel Fry, Imperial College, London for providing the photograph shown in Figure 1 and Dr. Gordon Plant, The National Hospital for Neurology and Neurosurgery, Queen Square, London for providing the CT brain scan shown in Figure 2.

References

Director, Medical & Disease Strategy – Neurology

Our client, Amersham Health, is a world leader in the provision of contrast agents, and one of the key areas of growing clinical need is neurology. The business is investing heavily in R&D, is increasing sales and profits, and has made exceptional progress in its portfolio development. Amersham Health’s products are used in hospitals and clinics around the world, and in order to support global growth and provide medical expertise to the team, there is now a need to take on a Director, Medical & Disease Strategy for Neurology.

THE ROLE:
• Support the Global Head of Medical & Disease Strategy in managing the systems, processes and resources for Neurology in the UK.
• Establish an internal and external global network of medical advisors.
• Act as a strategic company representative in the external neurological community.
• Work closely with the Strategic Marketing Group, and provide medical expertise.

THE PERSON:
• Medical Doctor degree with medical specialty training in neurology.
• Broad medical knowledge of disease processes and medical management of diseases.
• Extensive network throughout the external neurological community globally, therefore prepared to travel.
• Commercial aptitude, excellent interpersonal skills, creative and innovative thinker.
• Strong presentation skills.

This is an exceptional opportunity for an individual wanting to make a first move into a commercial role, or for an experienced Medical Director looking to take on a more global responsibility.

Please send a full CV and current salary details, quoting ref: 6390-019L0 to Lisa Gerhardt, E-mail: lgerhardt@heidrick.com

Correspondence Address
Dr. AJ Wills, Consultant Neurologist, Department of Neurology, University Hospital, Queen’s Medical Centre, Nottingham, NG7 2 UH. Tel: 01332-254889, Fax: 01332-254764, E-Mail: Adrian.Wills@sdah-tr.trent.nhs.uk
1. What are characteristic clinical features of ALS-Parkinson dementia complex?

There can be separate presentations of a motor neurone disorder (with wasting and spasticity, ultimately death from bulbar palsy), parkinsonism (usually with marked rigidity and akinesia, less tremor, than in ordinary PD), and a dementia (often presenting as an amnesic syndrome) – or these can co-exist in a single individual. ALS-like presentations were much commoner in the earlier days, whereas parkinsonism-dementia ones predominate now.

2. What has happened to the disease since the second world war?

The disease has become much rarer, altered its presentation (as noted above) and its age of onset: back in the early 1950s there were people in their twenties affected, now they are mostly late middle-aged or elderly people. No-one (or very few people) born after 1960 seems to have contracted the disease – though there may be, apparently, an ‘incubation period’ of decades between the initial ‘event’ (infectious, toxic, whatever) and the appearance of the complex.

3. How common is the condition in people migrating to and from Guam?

The 100,000-odd Chamorros in California (many of whom left Guam forty years ago) have the same incidence of diseases as those in Guam. The disease is almost or virtually unknown except in the native Chamorro population of Guam (and the native populations of the Kii peninsula and two villages in Irian Jaya, where a similar disease occurs). Migrants to Guam do not, apparently, get affected.

ALS-PDC is a disease primarily of the Chamorro people, but did not characterise non-Chamorro residents on Guam unless they adopted a traditional Chamorro lifestyle.

4. What is the evidence for a genetic as opposed to an environmental cause for this condition?

The evidence against a genetic causation is the absence of clear ‘Mendelian’ patterns of inheritance. The epidemiological evidence (or hint) of environmental determinants comes from the confinement of the disease to Guam (and two other places), and its much higher incidence in Guam, in certain villages. Again it is known that in the early 1950s there were people in their twenties affected, now they are mostly late middle-aged or elderly people. No-one (or very few people) born after 1960 seems to have contracted the disease – though there may be, apparently, an ‘incubation period’ of decades between the initial ‘event’ (infectious, toxic, whatever) and the appearance of the complex.

As an interesting counterpoint to this article, we are also publishing a commentary by Dr Huw Morris. Dr Morris, who spent some time in Guam, is able to rely on his own experiences and local knowledge and contacts to provide a cautionary note.

A flying fox is prepared for consumption at a Chamorro feast. The Chamorro, who are the native peoples of the Pacific island of Guam, boil the animal in coconut milk and consume it in its entirety. Research published in the March issue of Neurology conducted by a National Tropical Botanical Garden investigator suggests a possible link between plant toxins ingested through consumption of flying foxes and a high incidence of central nervous system disease in Guam.

A flying fox eating the fruits of a cycad in Guam. One of the main food sources of the flying fox are the fruits of the native cycad trees which contain potent neurotoxins, chemicals that can damage nerve cells.

Flying bats in Guam - the cause of the complex
that cycads are full of neurotoxins – neurocyadism has long been recognised among cattle in Australia who browse on the Macrozamia there – and careful washing etc is required. But there could also have been an infectious cause of lyticobodig (ALS-PD), an inapparent infection (as often happened with those who subsequently developed postencephalitic parkinsonism and other postencephalitic parkinsonism syndromes - OS

5. Why flying foxes as causative animal?
Because flying foxes native to Guam feed on the native cycads there, and may bioconcentrate some of their (lipophilic) toxins. Support for an environmental cause is suggested by the coincidence between the decline of lyticobodig after 1960 with the decline in eating of cycad flour (long-noted) and the virtual extinction of the native cycad-eating bat around the same time (which we are now noting) - OS

The Chamorro diet and indeed the Chamorro cultural character were uniquely characterised during the twentieth century by mass consumption of flying foxes which led to the extinction of one flying fox species on Guam and the near-extinction of the other species. This in turn led to the importation of other flying fox species from other island nations where cycads do not play an important role in the vegetation. As a result of the change in sources of flying foxes, the putative ingestion of biomagnified cycad neurotoxins began to decrease in the 1960s and reached negligible levels in the 1970s when the entire genus Pteropus in Guam teetered on the edge of extinction. The rise and fall of consumption of Guam flying foxes was shadowed by a rise and fall of the incidence of ALS-PDC in Guam - PC

6. Do other communities eat flying foxes and if so do they have a similar condition?
In parts of Polynesia, flying foxes were eaten, but never with the same relish or in their entirety as they are in Guam. And, in those islands of Polynesia where they are eaten, cycads do not play an important role in the vegetation. These islanders do not show higher levels of ALS-PDC - PC

7. Is there evidence for a similar aetiology in the recently described PD-like illness endemic in Guadaloupe?
At present different phytotoxins are under suspicion in Guadaloupe, namely those present in soursops and other Annonaceae – very potent infusions of these are widely used in folk medicine there. There has been no suggestion of an animal vector - OS

8. How can the theory be proven?
- By chemical analysis of carcasses of (preserved) Guamanian bats.
- By seeing if they have any neurological lesions similar to those of ALS-PD.
- By feeding other bats on cycads and seeing if they in fact accumulate and concentrate on the toxins - OS

Dr. Oliver Sacks is concerned with the link between body and mind, and the ways the whole person adapts to different neurological conditions. He was born in London and obtained his medical degree at Oxford. In the early 1960s he moved to the United States, where he completed an internship at UCSF and a residency in neurology at UCLA. Since 1965 he has lived in New York, where he is clinical professor of neurology at the Albert Einstein College of Medicine, adjunct professor of neurology at the NYU School of Medicine and consultant neurologist to the Little Sisters of the Poor and at Beth Abraham Hospital. In 1966 Dr. Sacks was a consulting neurologist for Beth Abraham, where he encountered an extraordinary group of patients, many of whom had spent decades in strange, frozen states, like human statues, unable to initiate movement. These patients were survivors of the great epidemic of sleepy sickness that had swept the world from 1916 - 1927. They became the subjects of his book, Awakenings (1973), which later inspired a play by Harold Pinter, “A Kind of Alaska” and the Oscar-nominated Hollywood movie, “Awakenings,” starring Robert De Niro and Robin Williams. Dr. Sacks is perhaps best known for his best-selling 1985 collection of case histories from the far frontiers of neurological experience, The Man Who Mistook His Wife for a Hat. In 1989, he received a Guggenheim Fellowship for his work on what he calls the “neuroanthropology” of Tourette’s syndrome, a condition marked by involuntary tics and utterances. His seven books have received numerous awards and been translated into 22 languages.

Dr. Paul Alan Cox is Director of the Congressionally chartered National Tropical Botanical Garden in Hawaii and Florida. He also serves as the King Carl XVI Gustaf Professor of Environmental Science at the Swedish Biodiversity Center. TIME magazine in 1997 honoured him as one of 11 “Heroes of Medicine” for his ongoing search for new medicines from plants. For his efforts in saving tropical rainforests, in 1997 he shared the $75,000 Goldman Prize, known as the Nobel Prize of the environment. A former Brigham Young University Dean, Cox was named in 1998 by CHOICE magazine as one of the top university leaders in America. A Ph.D. in Biology from Harvard University, his master’s degree in ecology from the University of Wales, and his bachelor’s degree in botany and philosophy from Brigham Young University. He has authored three books and over 120 scientific papers. Married to the former Barbara Wilson, he lives with his family on the island of Kauai.
The parkinsonism dementia complex of Guam and flying foxes

The identification of the high prevalence of parkinsonism dementia complex (PDC) and amyotrophic lateral sclerosis (ALS) on the Western Pacific island of Guam in the 1950s and 1960s raised hopes that the cause of these diseases could be identified on these islands, and that this discovery would help to explain neurodegenerative diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and ALS in other parts of the world. While the cause of ALS and PDC on Guam remains elusive, genes responsible for autosomal dominant forms of PD, ALS and AD have been discovered. Contrary to widespread neurobiological belief, PDC and ALS on Guam are unlikely to be due to cycad ingestion in tortilla flour. The excitatory amino acid beta-methylamino L-alanine (BMAA) is present in cycads, and experimentally does lead to an acute neurological syndrome in exposed animals. Similarly, the motor neuron disease lathyrism relates to beta-N-oxalylamino-L-alanine (BOAA) exposure in humans following ingestion of chickling peas. Unlike lathyrism, PDC does not have a clear temporal relationship to cycad ingestion and it has been estimated that one would have to eat several kg of cycad every day to lead to a comparable exposure to that used in the animal models.

Exotic geographical locations require exotic medical hypotheses, and Cox and Sacks propose, in the March 26 issue of Neurology and in this issue of Advances in Clinical Neuroscience and Rehabilitation, that ingestion of a type of Guamanian bat known as flying foxes leads to ALS and PDC by the process of “biomagnification”. These bats were apparently frequently eaten on Guam at social and ceremonial gatherings and some species were hunted to extinction by the mid 1970s. The decline of flying foxes in Guam closely parallels the decline in the incidence of ALS, and the villages that had the highest incidence of PDC and ALS, Umatac and Inarajan, are reported to have had the highest consumption of bat meat. This theory invokes substantial BMAA accumulation in bat tissue, which would result in a sufficient excitatory amino acid load to cause chronic neurotoxicity in humans. It is interesting to speculate how another mammalian species could be resistant to a toxin that is lethal in humans. This could relate to the relative lifespans of bats and humans, and cumulative toxicity in human consumers of bat meat. Alternatively, there are known to be species differences in the propensity to develop tau containing neurofibrillary tangles – humans and ungulates such as sheep develop neurofibrillary tangles whereas monkeys do not, and this may relate to species differences in alternative splicing of the tau gene. A neuropathological examination of wild pigs on Guam, which avidly eat cycads in the wild, has not revealed neurofibrillary tangle formation (Dr. J. Steele, personal communication).

Some type of traditional Chamorro custom may account for PDC and ALS and explain the declining prevalence of these diseases, and the intriguing hypothesis put forward by Cox and Sacks adds to a number of proposed explanations. However, up to this point detailed anthropological enquiry in areas of Guam affected by these diseases has not identified any differences in lifestyle between areas of high and low prevalence (Dr. V. Keck and Dr. J. Steele, personal communication). The decline in the prevalence of these diseases could also be interpreted in genetic terms with increased social mobility and out breeding leading to a decline in recessive or co-dependant genetic factors. The clustering of these diseases in some families in Southern Guam has been a recent long-term follow up case control study confirming the excess of cases in first degree relatives of affected individuals as compared with spouses and Chamorro controls. In the meantime, an analysis of excitatory amino acids in bat meat on Guam will be shortly underway. Whether an environmental cause, genetic factor or combination of these was primarily responsible for these mysterious diseases, it seems likely that the further away the epidemic becomes, the harder it will be to come to any firm conclusions.

References

Correspondence Address
Dr Huw Morris, National Hospital for Neurology, Queen Square, London WC1N 3BG. EMail: h.morris@ion.ucl.ac.uk
The Alsius Coolgard 3000™, combined with Alsius Icy™ or Cool Line™ catheters, provides leading-edge temperature management systems

- Controlled cooling and rewarming of patients with stroke, brain trauma or cardiac arrest
- Precise management of core body temperature at the bedside
- Programmable patient target temperatures and rates
- Large graphic display provides at-a-glance information
- Stores patient temperature data for later retrieval

For more information on Alsius products, please visit:
www.alsius.com website
or telephone 00 1949 453 0150
Dystonia is an interesting neurological disorder that continues to cause the clinician difficulties in formulating appropriate management strategies. Therapy is linked closely to the classification of dystonia and so the characterisation into aetiological sub-type and distribution of the condition should be established prior to devising any treatment plan. In a small minority of patients (eg. Wilson’s disease, doparesponsive dystonia (DRD)), specific treatment can be instituted but in the majority of cases therapy is symptomatic, directed at decreasing the intensity of the dystonic contractions. However a lack of knowledge relating to the underlying pathophysiology has hindered the discovery of effective pharmacological treatments for most forms of dystonia. Nevertheless because of the reversibility and responsiveness of DRD to L-dopa therapy, all patients with childhood onset dystonia should therefore be given an adequate trial of this drug. Unfortunately, treatment of dystonia with oral agents is otherwise generally unsatisfactory. For those with symptoms and signs unresponsive to levodopa, other oral medications, including anticholinergics, tetrabenazine, baclofen and benzodiazepines, may provide mild to moderate relief.

More effective treatment exists for the focal dystonia in particular the use of botulinum toxin, although injections of toxin into the affected muscle groups tends only to produce transient relief and generally need to be repeated every 3-6 months. For patients with more widespread dystonia, or those with disease progression in nature to the point where at presentation, she was anarthric, fully dependent on her parents for care and in constant pain due to dystonic contractions. However, a lack of knowledge relating to the underlying pathophysiology has hindered the discovery of effective pharmacological treatments for most forms of dystonia. Nevertheless because of the reversibility and responsiveness of DRD to L-dopa therapy, all patients with childhood onset dystonia should therefore be given an adequate trial of this drug. Unfortunately, treatment of dystonia with oral agents is otherwise generally unsatisfactory. For those with symptoms and signs unresponsive to levodopa, other oral medications, including anticholinergics, tetrabenazine, baclofen and benzodiazepines, may provide mild to moderate relief. More effective treatment exists for the focal dystonia in particular the use of botulinum toxin, although injections of toxin into the affected muscle groups tends only to produce transient relief and generally need to be repeated every 3-6 months. For patients with more widespread dystonia, or those with disease refractory to medical therapy or botulinum toxin injection, there appears now an increasing role for functional neurosurgical intervention.

Case Report: Idiopathic Torsion Dystonia

This 7 year old girl first began to exhibit features of dystonia at the age of 3 years. Her condition was progressive in nature to the point where at presentation, she was anarthric, fully dependent on her parents for care and in constant pain due to generalised dystonic spasms. Genetic analyses revealed that she was negative for the DYT1 gene. Medical therapy including L-dopa, benzhexol, clonazepam and botulinum toxin had not provided any long-lasting benefit. Her Fahn and Marsden dystonia rating scale scores were 109/120 for movement and 29/50 for disability. No changes were observed until stimulation was initiated one month after implantation of bilateral electrodes into the posteroventral internal globus pallidus (GPI). She subsequently experienced gradual improvement in most aspects of dystonia. At 5 months her Fahn and Marsden rating scores had improved to 47/120 for movement and 14/29 for disability. She continued to improve and was able to communicate, attend school, walk unaided and remain continent.

The first recorded case of surgery for dystonia dates back to 1641 when the German physician Minnius treated torticollis by sectioning the sternocleidomastoid muscle. The Russian surgeon Buyalsky (1850) appears to have performed the first spinal accessory nerve section for spasmodic torticollis followed by Morgan in 1867 and Collier in 1890. Spinal cord root section to treat spasmodic torticollis, involving unilateral section of the first three anterior cervical roots, was first proposed over a century ago by Keen (1891). This procedure of cervical rhizotomy was refined over the years by surgeons including Dandy in 1928 who combined intradural section of the cervical sensory and motor roots with accessory nerve section. By 1979 variations of this procedure were still considered the operation of choice for cervical dystonia refractory to medical therapy. However, long-term follow up has disputed the effectiveness of these techniques.

The introduction of stereotactic surgery allowed Bertrand (1978) to combine thalamotomy and peripheral denervation with improved outcomes. Further development of stereotactic techniques coupled with satisfactory results encouraged its use by functional neurosurgeons who have attempted to treat dystonia by lesioning a variety of different deep brain structures.
structures including the internal capsule, cerebral peduncles, dentate nucleus, various basal ganglia and thalamic targets. As in other hyperkinetias, medial pallidotomy was the first stereotactic operation to be performed, initially for spasmodic torticollis in 1953 by Rechert followed by its use for generalised dystonia in 1957 by Cooper. Unfortunately in comparison with thalamic surgery only a few small series of pallidotomy for dystonia were published at that time. Hence by the 1960’s, thalamotomy was emerging as the stereotactic procedure of choice. In 1976 Cooper published the results of thalamotomies that he had performed on over two hundred patients, reporting good or moderate improvement in 70% of his patients series. There was also some evidence that lesioning this target benefited patients with secondary dystonia, hemidystonia and tardive dystonia. However, in contrast to pallidotomy, the high incidence of postoperative dysarthria and dysphagia usually prevented surgeons from performing simultaneous bilateral thalamic surgery. Also, compared to Cooper’s original series, subsequent studies from other centres have produced more variable and generally less impressive results. Consequently the ideal subcortical target for lesional surgery has not been established and also to help ascertain what the optimal parameter settings are.

The success of Deep Brain Stimulation (DBS), within the last few years, as treatment for a number of different movement disorders could soon see it as the first-line treatment for dystonia refractory to medical intervention. It has the advantages over lesional surgery of being reversible, adaptable and avoids concern about the effects of lesioning the developing brain in the case of children. DBS also allows bilateral surgery to be undertaken because of the reduced level of morbidity involved. As dystonic posturing may be very severe, DBS is usually performed under general anaesthesia for dystonia, unlike functional surgery for tremulous disorders, which usually occurs with the patient fully awake.

A new method for successfully treating spasmodic torticollis by implantation of stimulators into the thalamus was described by Mundinger in 1977. Since then, it has been demonstrated that targeting thalamic nuclei can produce favourable results in a number of different forms of dystonia. For example, Vercueil (2001) employed this technique in twelve patients with generalised dystonia resulting in a satisfactory outcome in five of the patients. Because of the success of thalamotomy and neurophysiological evidence implicating the thalamus in the pathogenesis of dystonia, the pallidum was not initially the favoured target for DBS. There are only a few reports of the effects of pallidal stimulation in dystonia and these are mainly case reports or small case series. Although to date there do not appear to be any formal comparative studies of thalamic versus pallidal stimulation, there are several instances where patients with stimulators in both deep brain structures appear to have benefited more from palilidal rather than thalamic stimulation.

Present evidence favours the view that GPi is superior to thalamic stimulation for primary and secondary dystonia and it would appear that DBS is one of the most effective means of alleviating dystonia. Generalised dystonia, particularly in those patients who are positive for the DYT1 gene, is the best indication followed by spasmodic torticollis, where respectively mean 70% and 40% improvements have been reported. Post-traumatic dystonias with visible brain lesions on imaging do not appear to respond well to DBS. Furthermore, it is also important to note that a feature of these dystonic conditions is that the response is gradual, manifesting as a progressive improvement in the condition over months to years. Experience gained from the patients treated by our group suggests that maximal or near maximal improvement occurs at about one year in patients with generalised dystonia. Those with spasmodic torticollis improved at a slower rate, gaining most benefit approximately two years post-surgery. Longer-term follow-up will be needed to confirm that these benefits are maintained and also to help ascertain what the optimal parameter settings are.

Further Reading

Correspondence Address

Mr. John Yianni and Prof. T. Aziz, The Oxford Movement Disorder Group, Department of Neurological Surgery, The Radcliffe Infirmary, Oxford University Department of Physiology, Oxford University, Oxford OX2 6HE, UK.
E-mail: tipu.aziz@physiol.ox.ac.uk, Fax: 01865 324786

We would like to thank Medtronic for their sponsorship of this article.

Contact details are -
Mr. Clive Woodard, UK Manager - Activa Therapy, Medtronic (UK) Ltd, Suite One, Sherbourne House, Croxley Business Centre, Watford, Herts WD1 8YE
Tel: 01923 212213
Email: clive.woodard@medtronic.com
The cerebello-pontine angle

The basics. The cerebello-pontine angle is the space bound by the cerebellum, pons and temporal bone and contains the short intracranial courses of the fifth, seventh and eighth cranial nerves. By far the most common pathology in this area is the acoustic neuroma (or, more correctly, schwannoma) which classically gives rise to sensorineural deafness, ipsilateral facial palsy, ipsilateral cerebellar signs and trigeminal sensory loss.

Coronal MRI of the pons

Five nerves enter the internal auditory canal:
- Facial
- Intermediate (usually enters with the facial nerve, but sometimes travels with the superior vestibular nerve)
- Cochlear
- Superior & inferior vestibular nerves

This image demonstrates the relationship between the nerves running in the internal auditory canal and the trigeminal nerve.

Sagittal MRI of the internal auditory meatus

Acoustic neuromas usually (85%) arise from the inferior vestibular nerve, less often (10%) the superior vestibular nerve and never the cochlear nerve. The facial and cochlear nerves are pushed forward by a tumour of the inferior vestibular nerve.
Large cerebello-pontine angle lesions may compress the pons, the ipsilateral cerebellar hemisphere, the trigeminal nerve anteriorly and superiorly, and the IX, X and XI nerves posteriorly. Although the sixth cranial nerve emerges from the anterior pons between the fifth and seventh nerves, it immediately runs upwards into the subarachnoid space around the basilar and so usually avoids compression from cerebello-pontine angle lesions.

Axial section of the pons

Cerebello-pontine angle lesions

- 75% acoustic schwannoma
- 10% meningioma
- 5% epidermoid
- Rare:
 - Metastases
 - Paraganglioma (glomus jugulare tumours)
 - Other schwannomas (facial and trigeminal)
 - Vascular lesions

References

University of California Acoustic Neuroma team
http://itsa.ucsf.edu/~rkj/IndexAN.html
Johns Hopkins Acoustic Neuroma Textbook
http://www.med.jhu.edu/radiosurgery/braintumors/acoustic/textbook/
Mood and affective problems after traumatic brain injury

Introduction

Survivors of traumatic brain injury (TBI) are vulnerable to a range of psychosocial difficulties. The impact of unrecognised and untreated emotional sequelae of TBI upon psychosocial outcome has been highlighted. Psychosocial problems present the greatest challenge to rehabilitation services1. Despite some shifts towards recognition of such problems2, increased understanding of the emotional and psychosocial aspects of brain injury and the provision of services for treatment is required to meet the high level of unmet need within this client group.

What are the common difficulties?

High rates of psychiatric disorder have been identified amongst survivors of traumatic brain injury using established diagnostic criteria3,4. Depression, anxiety disorders (such as Post Traumatic Stress Disorder, Obsessive Compulsive Disorder and Panic Disorder), and irritability or anger problems would appear to be the most common diagnoses, and premorbid psychopathology may predict substance abuse disorders post-trauma. Typically, studies show that about a third of TBI survivors experience emotional problems between 6 months and a year post injury5,6, about a third of TBI survivors experience emotional problems between 6 months and a year post injury5,6, others place levels even higher7. The presence of emotional or behavioural problems post injury which impact on the individual’s family have been reported at 84%8. Clinically significant levels of hopelessness (35%) suicidal ideation (23%), and suicide attempts (18%) post-injury have been identified9.

Approximately 50-80% of TBI survivors admitted to hospital following their injury report symptoms of post concussive syndrome (PCS)9,10. PCS symptoms include headache, fatigue, sensory sensitivity (to noise or light), memory and attentional problems, low mood, anxiety and irritability. Whilst symptoms generally improve within 3-6 months, for about 15% of survivors such symptoms may persist beyond three years11. Disorders of motivation are another commonly occurring neurobehavioural consequence, characterised by apathy, indifference or lack of concern, and lowered initiation, verbal output and libido9,12.

Identification of disorders

Clarity of diagnosis and aetiology may be compromised by complexity of the problem9, the limitations of measures which may reflect a different set of aetiological assumptions to those used within a purely psychiatric setting13, and the use of terminology for experienced and expressed emotional states which poorly represents the subjective experiences of clients9.

Neurologically based apathy has been shown to share negative, but not somatic or affective, symptom features of depression14. The affective and cognitive symptoms of post concussive syndrome, depression, anxiety, irritability15, and post traumatic stress disorder share features, but may have differing aetiology. Symptoms consistent with dysexecutive syndrome such as perseveration, impulsivity, and irritability can be mistaken for behavioural indicators of OCD, although affective and cognitive indicators (in terms of beliefs about obsessive-compulsive thoughts and behaviours) differ.

How can mood and affective problems be understood?

Biopsychosocial Frameworks

Frameworks for considering sources of emotional sequelae16 and for identifying areas for assessment and intervention in neuropsychological rehabilitation17,18 have been proposed. These ‘biopsychosocial’ models argue for parallel consideration and application of a range of factors and models.

Gainotti19 proposed three categories of factors in considering emotional consequences of brain injury: neurological, psychological, and psychosocial.

Neurological factors

Neurological factors are fundamental to the experience and processing of emotions. Fronto-temporal-limbic circuitry appears to be particularly implicated in a range of emotional disturbances. Ventro-medial frontal areas are thought to play an important role in motivation and anticipation20. Right hemisphere and subcortical lesions have been associated with disorders of motivation21. Impairments of emotion recognition create difficulties responding appropriately in interpersonal situations. Sensory changes such as intolerance of light or noise, in addition to the secondary psychological impact of physically disabling impairments are also relevant. Distinctions between neurological impairment of self-awareness, and psychological denial of disability have been made22.

Psychological factors

Gainotti draws on psychodynamic theories of denial in issues of emotional adjustment following brain injury. Other papers have highlighted the important roles of pre and post-morbid coping style23,24, personality25, client’s psychopathology as factors influencing emotional outcome.

In terms of their subjective experience of themselves2,7,25 has demonstrated how survivors may experience distressing threats to their sense of identity. These are summarised below:

- repeated failure and associated frustration
- others not behaving reports of cognitive difficulties
- loss of memories
- comparison of self pre and post injury
- loss of identity through labelling and fear of stigma
- discrepant information from medical services (i.e. being told that there’s nothing wrong, or being given a very poor prognosis)
- discrepancy between being normal (but not receiving services) and being diagnosed (but being labelled or stigmatised by society).

Table 1: subjective complaints of survivors of TBI.

The important aspect of the individual’s readiness or motivation to change socially problematic behaviour26, and the application of behavioural models focusing on environmental contingencies influencing behaviour have been discussed27-29.

Psychosocial Factors

Gainotti recognises the twofold impact of the consequences of the brain injury upon both the individual’s system of social activities and relationships, and upon others within their social system. Reduction in size of social system, nature of relationships (e.g. changes in intimacy and sexual relationships), changes in roles, and increased financial burden are highlighted as imposing a significant burden on both the individual and their family. Gainotti notes that family members cope with the physical consequences better than the emotional or behavioural difficulties. Caregivers do not shift towards more adaptive, problem-focused styles of coping over time post injury, and use of an emotion focused (rather than...
problem focused) style of coping is related to degree of caregiver emotional distress26.

Environment

Features of the environment also influence the expression or maintenance of affective problems through the interaction of demands, vulnerabilities, and reinforcement. In this sense the literature presents mood and affective problems not only within a biopsychosocial framework, but also in terms of a stress-vulnerability model. Table 2 above demonstrates some hypothetical affective scenarios, based on a selection of potential factors within a cognitive-behavioural framework.

How should mood and affective problems be approached?

Gainotti refers to Prigatano's arguments for the principles of holistic rehabilitation, targeting affective problems, self-awareness and acceptance, and return to a productive lifestyle through integrated group based rehabilitation. However, such services are not widely available, so what can be done within existing services? A group based rehabilitation. However, such services are not widely available, so what can be done within existing services? A cognitive-behavioural framework.

Features of the environment also influence the expression or maintenance of affective problems through the interaction of demands, vulnerabilities, and reinforcement. In this sense the literature presents mood and affective problems not only within a biopsychosocial framework, but also in terms of a stress-vulnerability model. Table 2 above demonstrates some hypothetical affective scenarios, based on a selection of potential factors within a cognitive-behavioural framework.

How should mood and affective problems be approached?

Gainotti refers to Prigatano's arguments for the principles of holistic rehabilitation, targeting affective problems, self-awareness and acceptance, and return to a productive lifestyle through integrated group based rehabilitation. However, such services are not widely available, so what can be done within existing services? A group based rehabilitation. However, such services are not widely available, so what can be done within existing services? A cognitive-behavioural framework.

Conclusion

The importance of careful psychological and neuropsychiatric assessment for identifying causal, contributory, or maintaining factors of affective problems following TBI has been highlighted. The need to consider the subjective understanding and experience of the TBI survivor and their family or caregiver has also been emphasised. Increasingly, the need for a biopsychosocial approach to understanding the consequences of brain injury, and in particular emotional consequences, is being highlighted. The amelioration of mood and affective problems may require reference to a broad range of models. These should consider physical and cognitive impairments, functional difficulties, and social and cultural factors. Sharing of the clinical conceptualisation, in an appropriate form, with the client and their family is advised to maximise collaboration and engagement. Functional rehabilitative efforts are likely to have a positive impact on emotional well being through improved quality of life. Modified cognitive behavioural therapy may provide both a system and a set of interventions that are particularly appropriate for mood and affective problems.

Table 2: Hypothetical scenarios demonstrating links between neurological, cognitive, environmental, behavioural and interpersonal factors.

<table>
<thead>
<tr>
<th>Features of the environment</th>
<th>Problem focused</th>
<th>Cognitive impairment</th>
<th>Environmental impact</th>
<th>Hypothetical subjective experience or thoughts</th>
<th>Behavioural expression of emotion</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory problems secondary to amnesic impairment, and amnesia</td>
<td>Memory, attention, and memory problems</td>
<td>Learning the house to attend rehabilitation</td>
<td>Doubt and uncertainty “I’ve forgotten something.” If I forget it the others will think I’m stupid.”</td>
<td>Checking and re-checking before leaving</td>
<td>Late arriving for rehabilitation, anxiety, agitation, withdrawal “What’s the point in carrying on?”</td>
<td>Social withdrawal</td>
</tr>
<tr>
<td>Sensitivity to noise or light</td>
<td>Noise and bright work environment</td>
<td>Unilateral auditory disorientation, distractibility, insomnia</td>
<td>Irritability or mood agitation, to others pressure productivity</td>
<td>Loss of job, anger at others, “I can’t bear this.”</td>
<td>Outrage at others “I can’t bear them any longer, I’m useless now.”</td>
<td>Social withdrawal</td>
</tr>
<tr>
<td>Area of cognitive impairment</td>
<td>Focus of CBT</td>
<td>Area of cognitive impairment</td>
<td>or difficulty which may be compensated for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core feature of CBT</td>
<td>Area of cognitive impairment or difficulty which may be compensated for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaboration</td>
<td>Confidence, acceptance, stigma</td>
<td>Awareness, confidence, improved encoding and specificity of autobiographical recall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis on monitoring problems and successes</td>
<td>Awareness, impulsivity</td>
<td>Awareness, impulsivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis on “stop, think” approaches and development of “internal dialogue”</td>
<td>Memory, understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of practical tasks as points of learning (behavioural experiments)</td>
<td>Abstract thinking, comprehension, new learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of auditory cues or techniques for the client to refer to between sessions</td>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ongoing summarising by the therapist</td>
<td>Memory, attention</td>
<td>Attention, abstract thinking, comprehension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of an independent problem solving approach to everyday difficulties as experienced by the client</td>
<td>Executive impairments of problem solving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Features of CBT in relation to areas of difficulty post brain injury.

Adaptation of CBT can be considered on the basis of increased understanding of relationships between cognition and emotion22,23,32,35. Approaches which target adjustment* or development of new beliefs and assumptions, rather than changing pathologically ‘irrational’ beliefs, could also be of benefit. Some of the core aspects of CBT (see Table 3) offer great potential for addressing cognitive impairments within therapy. Findings from case studies describing the treatment of irritability26, and PTSD24, are promising, although important caveats for certain techniques have been identified. For example, ‘perseveration of emotional response’ during exposure work (an evidence based CBT intervention for PTSD) has been noted as a consequence of emotional activation in the context of executive functioning problems26.

Conclusion

The importance of careful psychological and neuropsychiatric assessment for identifying causal, contributory, or maintaining factors of affective problems following TBI has been highlighted. The need to consider the subjective understanding and experience of the TBI survivor and their family or caregiver has also been emphasised. Increasingly, the need for a biopsychosocial approach to understanding the consequences of brain injury, and in particular emotional consequences, is being highlighted. The amelioration of mood and affective problems may require reference to a broad range of models. These should consider physical and cognitive impairments, functional difficulties, and social and cultural factors. Sharing of the clinical conceptualisation, in an appropriate form, with the client and their family is advised to maximise collaboration and engagement. Functional rehabilitative efforts are likely to have a positive impact on emotional well being through improved quality of life. Modified cognitive behavioural therapy may provide both a system and a set of interventions that are particularly appropriate for mood and affective problems.

Dr Fergus Gracey, The Oliver Zangwill Centre for Neuropsychological Rehabilitation, Ely, Cambridge.
This course aims to integrate theory with clinical management of functional memory difficulties together with the application of compensatory strategies following severe head injury.

13th European Congress of Physical Medicine and Rehabilitation

Three themes ran through this meeting in Brighton: clinical standards in rehabilitation medicine, measurement, and effectiveness. A European perspective was obtained, with a few Australasian touches. Despite great energy, it seems that everyone shares the problem of setting meaningful standards in terms that are actually useful both to clinicians undertaking the complex activity of rehabilitation and to those who fund health care. It was good for group bonding, but demoralising all the same to find that the ability of funders to mis-use clinically derived data is international: if the Barthel scale score doesn’t change then rehabilitation isn’t taking place.

I am beginning to feel old now I can remember conferences in rehabilitation when the message was “measure, measure and measure again” and battles would rage where the proponents of one scale would impugn the validity of rival scales. Such fun we had. In this meeting, a much more healthy nihilism about measurement was evident from the speakers. In part this was driven by the disturbing findings of the European PRO-ESOR project. This found that FIM scores mean different things in different parts of Europe and so are not comparable. This prompts me to speculate what on earth our functional scores really do measure. But the greatest challenge of all remains to find ways of defining and measuring clinical expertise: there can be no doubt that this exists, so it must be measurable.

There have been great strides in the establishment of the effectiveness of rehabilitation, particularly at a service level. Rigorous studies of specific interventions are now emerging too. An example was an elegant randomised study where patients with poor balance after stroke received balance training either with or without a blindfold. The idea was that removing the visual input would prevent visual compensation in balance tasks, and that such “visual constraint” would improve the underlying balance mechanisms, and this proved to be the case.

But with aids, appliances, prostheses and the like: how should they be evaluated? What constitutes evidence of effectiveness? In a thought-provoking lecture, Professor Henk Stam from Rotterdam outlined how much the world of prosthetics resembles the world of the marketing of any other consumer goods or products. When I buy some toothpaste for myself, I don’t usually read up on the RCTs demonstrating its effectiveness before making my choice, and I will be influenced by advertising or free gifts like anyone else. But what effect does the sponsorship of medical meetings by the companies that manufacture appliances have upon prescribing decisions, (at the expense of the taxpayer in most cases)?

A wonderful thing about large meetings is to see invention, innovation diversity and enthusiasm. I was interested in the apparently beneficial effects of magnetic fields, since in my ignorance I had thought this sort of treatment had disappeared either last century or the one before that. Hippotherapy, which is the treatment of people (with multiple sclerosis in this case) by horse riding, was under test. I noted that it improved the sexual function of men, but not women. Robotic physiotherapy was under early evaluation and development. It was not hard to see how stroke physiotherapy could be routinely robotically enhanced in a few years time. Functional electrical stimulation to enable cycling for aerobic fitness training in those with paraplegia looked like great fun and a marvellous success compared to the more usual disappointing effects of FES in walking. The next (14th) European Congress, in May 2004, will be in another cultural capital, this time Vienna, Austria.

Dr John Gladman, Nottingham

A word from the BSRM President

This congress was organised by the BSRM together with the SRR to create one of the biggest forums of general rehabilitation practice and research ever seen in the UK. About 650 people attended the congress, including 400 doctors from over Europe (joined by a few from Australasia and North America) and over 130 other health professionals from the UK. Problems faced by those with disabilities, their families and carers not surprisingly are similar the world over. Strategies from health and social agencies seemed varied, but difficulties in enabling individuals to return to work in spite of illness or disability seem frighteningly similar in developed countries with responsibilities varying between employers and the state. As in the UK, some countries have difficulties with service provision relating to different policies being adopted by different local authorities. The need for an interdisciplinary working was clear throughout all the plenary sessions. Visitors to the UK seemed interested at our community-based rehabilitation, which seems well developed compared to some European countries.

The conference was enhanced by many sponsoring organisations and companies, including some from the voluntary sector, which greatly contributed to the success of the conference (see the special news review pages at the back of this magazine, where you can also find more information about the BSRM). The BSRM is also grateful to the many individuals from the SRR and the BSRM who reviewed the hundreds of abstracts submitted.

Andrew Frank
BSRM President
MAJOR NEW INDICATION

Targeted first-line therapy for focal spasticity

Helps patients and carers meet functional goals

Improves functional disability

Repeat treatment produces sustained improvement in muscle tone and function

Targeted relief of spasticity without the sedation of oral agents

A low protein formulation means a low chance of an antigenic response

References:

BOTOX® is licensed for the management of post-stroke spasticity of the wrist and hand

Improving form and function
International Conference on Basic and Therapeutic Aspects of Botulinum and Tetanus Toxin

Between the 8th and 11th of June several hundred basic scientists and clinicians from throughout the world gathered in Hannover to discuss the scientific and clinical aspects of botulinum and tetanus toxins. The goal of the conference was to provide an opportunity to share scientific and clinical experiences and to provoke further interest in neurotoxin research. Some of the sessions were joint sessions involving both basic scientists and clinicians, and as a clinician I was fascinated by some of the insights into the molecular and biochemical basis of botulinum toxin. For example, one presentation made the point that the 7 out of 13 epitopes of botulinum toxin A (BTXA) and botulinum toxin B (BTXB) cross-reacted in all are neutralising antibodies. The authors then showed that they may boost the shared immune response.

In light of this it was not overly surprising to learn (in a clinical session) that up to 25% of patients in one series who were switched to BTXB because of secondary non-responsiveness due to antibodies to BTXA had, within a year, also developed resistance and antibodies to BTXB. This makes it even more important to try to prevent antibody formation by making sure that patients are not reinjected too quickly and by keeping the dose of BTX to the minimum. Most patients who develop antibodies usually do so in the first four years.

A great deal of data on the results of key clinical trials which established indications for BTX therapy (such as cervical dystonia, focal limb dystonia and adult and paediatric spasmodic torticollis) was presented. This was followed by papers and discussion on the mechanisms of BTX action and on the best way to target specific muscles (such as ulnars for the ilopsoas for spas tic legs in children and EMG guided injections for occupational cramps). Several sessions concentrated on the treatment of disorders of the autonomic nervous system especially hyperhidrosis and hyper-salivation. These are now established indications for BTX use. The enhanced effect of BTXB on neurosecretory junction blockade was emphasised. BTX as a treatment of pain syndromes raised some debate. Disorders of the upper and lower GI tract (such as achalasia cardia and rectal fissures) are regularly treated by BTX and there is work ongoing in urolological conditions. I was aware that BTX use in dermatology has shown a huge increase over the last few years, but I was slightly taken aback to learn that the increase over the last 3 years had been something in the region of 1500%!

The conference was a great success and the feedback was overwhelmingly positive and it is planned to hold it again for the next year. The conference was also held in association with the 12th Internationalconference on Toxicology, Hannover, Germany. The conference was well attended and there was a lot of discussion between the various sessions. Some of the highlights included:

- A great deal of data on the results of key clinical trials which established indications for BTX therapy (such as cervical dystonia, focal limb dystonia and adult and paediatric spasmodic torticollis).
- Several sessions concentrated on the treatment of disorders of the autonomic nervous system especially hyperhidrosis and hyper-salivation.
- There was a lot of discussion about the increase in BTX use in dermatology, which has shown a huge increase over the last few years.
- There was also a lot of discussion about the use of BTX in urolological conditions.

Peter Misra, London
The British Branch of the International League Against Epilepsy held its annual scientific meeting at the University of Exeter between the 3rd and 6th of April 2002. Approximately 400 delegates attended, representing the many disciplines that now make up the British epilepsy community. The programme was a diverse one, ranging from Sudden Death in Epilepsy, the basic sciences of epilepsy, epilepsy nursing practice, hypothalamic hamartoma, vagal nerve stimulation, the older person with epilepsy, predicting the outcome of anti-epileptic drug treatment, the needs of women with epilepsy, cardiac disorders mimicking epilepsy and the management of people with learning difficulty and epilepsy. Only a fraction of the busy programme can be presented here.

On the first full day of the conference there was a workshop, devised by Liam Gray of the Neurosciences Department of Southampton University, on the relationship between basic science and clinical practice in epilepsy. The workshop debated three main questions: whether epilepsy causes lesions in the brain or brain lesions cause epilepsy, whether the brain has its own endogenous anticonvulsants and the effect of brain plasticity and gene sequences on epilepsy and vice versa. Participants in the workshop left with the feeling that we are on the edge of a far better understanding of the basic mechanisms of epilepsy (with the possibility of rational effective treatment) and that answering the question ‘why don’t we all have epilepsy?’ may be eventually more illuminating than trying to answer the question ‘why does this person have epilepsy?’

On the same day there was a nursing workshop, devised by Lyn Greenhill from the Birmingham University Seizure Clinic, which addressed the sometimes controversial theme of advances in nursing practice in epilepsy care. Nurses no longer see themselves as devoted handmaidens of all-knowing physicians, but as independent practitioners who have a pivotal role in the management of people with epilepsy. A protocol was presented for nurse prescribing in epilepsy, which built on the covert prescribing that people with epilepsy. A protocol was presented for nurse prescribing in epilepsy, which built on the covert prescribing that nurses already do, called for practical apprentice type learning and for prescribing in epilepsy to be protocol driven (as all prescribing should be). A similar apprenticeship model of learning (with agreed protocols) was presented for three areas of epilepsy in which nurses are starting to practice independently, fast track "triage" clinics for patients with new onset seizures, preconception and pregnancy clinics and Vagal Nerve Stimulation clinics. Audit of two “triage” clinics showed a trained nurse to be as accurate in diagnosis and management as the consultant. The workshop concluded that the relationship between physician and nurse should become a mutually supportive partnership.

Adam Fitzpatrick from the Manchester Heart Centre presented, with his colleagues in cardiology and neurology, a fascinating and disturbing seminar, which provoked much discussion, on those cardiac disorders which can be, and often are, mistaken for epilepsy. Possibly as many as 30% of people with epilepsy resistant to conventional anti-epileptic treatment, may have a primary cardiac disorder that may go unrecognized for years, and yet will often respond to simple treatment. There was much discussion whether the two conditions could be distinguished by careful history taking and examination but the gloomy conclusion was that there is so much overlap in terms of symptoms that the task is almost impossible. It was suggested that in those patients where seizures remain intractable and there is no conclusive electroencephalographic evidence of epilepsy then video EEG (and ECG) monitoring will be mandatory: for epilepsy specialists access to tilt table facilities will also be needed. This has resource implications.

The conference also heard evidence (from work of the Birmingham University group on the structure and function of the ovary in women with epilepsy, from the latest data from the Belfast run British Pregnancy Register and from the Liverpool group studies of intellectual development in children exposed to anti-epileptic drugs in utero) that leads to the conclusion that the time has come to manage women with epilepsy differently from men with epilepsy, particularly in terms of avoiding certain anti-epileptic drugs if at all possible in women with epilepsy.

In another seminar they also heard that the new science of pharmacogenetics is still a long way from predicting response to anticonvulsant drugs, but may be somewhat nearer to predicting those patients likely to respond with unpleasant side effects.

Dr Tim Betts,
Birmingham University Seizure Clinic
Phineas Gage and the beginnings of neuropsychology

1848 was a year of political revolutions in Europe. In the same year, in the field of neuroscience, a freak occurrence would also prove - eventually - to have a revolutionary impact. Few neurologists will be unfamiliar with the name of Phineas P. Gage, nor with the extraordinary work-related accident which befell him on the afternoon of 13 September 1848 in Burlington, Vermont, USA.1 Excavating rock with blasting powder, an accidental ignition caused a tamping iron approximately 1.1 m (43 inches) long, 3 cm thick at its widest point, and weighing 15 pounds, to smash through the left side of Gage’s face, entering just below the cheekbone, and emerge from the top of his skull, landing some 25-30 yards away smeared with brain. Gage was thrown back, a few convulsive movements of the extremities were observed, but he was able to speak within a few minutes.

Fewer neurologists may be familiar with Dr John Harlow, the railway physician who attended Gage within two hours of the accident. Harlow continued to treat Gage in the following days when death from infection seemed imminent. He then continued to observe the changes in Gage’s personality, up to the time of his death from status epilepticus in 1861. Moreover, it was Harlow who persuaded the family to permit exhumation of Gage’s skull five years after his death (no post mortem was performed). Harlow published his findings in two papers,1,2 without which record Gage might not be remembered at all.

Gage’s skull was subsequently donated to the Warren Anatomical Museum at Harvard University School of Medicine. Modern neuroimaging techniques have been used to study Gage’s skull and reconstruct the probable path of injury caused by the tamping iron.1 This has permitted more precise definition of the lesion location, and suggests that both left and right prefrontal cortices were injured. As Harlow’s account records in detail the behavioural changes manifested by Gage after the accident,1 and is still regarded as one of the best accounts of behavioural disorder following prefrontal damage, clinical-anatomical correlation is possible. From an efficient and capable work foreman, Gage became irreverent, capricious, profane and irresponsible, and showed defects in rational decision making and the processing of emotion, such that his employers refused to return him to his former position. Harlow argued that the frontal lobe lesion had caused a loss of planning skills.1 These neurobehavioural changes, sometimes labelled “pseudopsychopathic” or “sociopathic”, are now regarded as typical of orbitofrontal injury, having been observed in other patients with selective lesions of this area.4 However, other case histories indicate the need to differentiate this clinical picture from that following injury to other parts of the frontal lobes. For example, a more recent report, with prolonged follow up, of a patient with frontal lobe injury due to an iron bar penetrating the skull documented prominent apathy, difficulties with planning, and lack of drive, yet stability of function within the domestic, professional and social setting (cf. Gage), associated with dorsolateral prefrontal injury.1 Disinhibited, apathetic, and akinetic types of frontal lobe syndrome are described, associated respectively with orbitofrontal, frontal convexity and medial frontal lesions.

Although we accept the landmark status of Gage in the development of ideas relating to cortical localisation, the contemporary response to Harlow’s reports was, to say the least, muted.1 However, the account did appear at a propitious time. Broca was publishing his observations correlating aphasic syndromes with focal brain injury (1861), and Fritsch & Hitzig’s electrical stimulation studies of the exposed cortex were soon to follow (1870). Ferrier’s experimental observations in monkeys (1878) largely confirmed Harlow’s clinical findings in Gage.

Gage is unquestionably one of the most famous patients in neurological history, a fixture in neurological textbooks and the subject of many papers. (Regrettably these often err in their assertions about him, principally because they neglect the original Harlow reports.)4 A cursory study of the history of medicine indicates that it is unusual for the names of patients, rather than their doctors, to be recorded for posterity (one eponymous exception which immediately springs to mind is Christmas disease). Why should it be, then, that Gage is remembered, and not Dr Harlow? Many speculations might be advanced: perhaps the extraordinary “truth-stranger-than-fiction” nature of the accident Gage suffered, the very fact that he survived, his memorable name, the fact that he was written up. More significant, however, may be the possibility, evident with the benefit of hindsight, that this case represents part of a paradigm shift: a “natural experiment” which demonstrated the possibilities of correlating particular personality and behavioural changes with injury to focal brain regions, and hence the correlation of function with location. This practice continues in modern neuropsychology, where detailed case histories may be compared with structural and functional neuroimaging findings to help elucidate the workings of the brain.5

References

Authors
Dr Andrew Larner is the editor of our Book Review Section. He is a Consultant Neurologist at the Walton Centre for Neurology and Neurosurgery in Liverpool, with a particular interest in dementia and cognitive disorder. He is also a Honorary Associate Lecturer in the History of Medicine at the University of Liverpool.

Dr John Paul Leach has recently been appointed to a consultant post at the Southern General Hospital in Glasgow, having trained in neurology and neurosurgery at the Walton Centre for Neurology and Neurosurgery in Liverpool.

Correspondence Address
Dr AJ Larner and Dr JP Leach
Walton Centre for Neurology and Neurosurgery
Lower Lane, Fazakerley, Liverpool, U.K.
Dr Larner, E-Mail: larner-a@wcnn-tr.nwest.nhs.uk
EDITOR’S CHOICE

Improving the outcome of spinal cord injury

When the spinal cord is injured, astrocytes form scars that act as physical barriers to axon growth. In addition there is a chemical barrier: the extracellular space of such scars contains molecules that actively inhibit axon extension, including chondroitin sulphate proteoglycans. In this elegant study Stephen McMahon’s group, at King’s College London, investigated the effects of inhibiting chondroitin sulphate proteoglycans on recovery from a spinal cord injury. Adult rats received a dorsal column crush at C4, as well as an intrathecal injection of chondroitinase ABC, which degrades chondroitin sulphate proteoglycans. The controls were rats with no spinal injury and rats with a spinal lesion who received placebo. Chondroitinase ABC treatment increased the number of fibres bundles accompanying and crossing the lesion (by cholera toxin B-subunit labelling of median nerve projections for ascending tracts and biotinylated dextran amine injected into the motor cortex for descending tracts). This increased anatomical connectivity was accompanied by a greater preservation of the dorsal column potentials evoked by electrical stimulation of the motor cortex. Most importantly, chondroitinase ABC treatment was associated with improved function on behavioural tasks such as beam or grid walking, as well as an adhesive tape removal task (!). Lastly, (and it is hard not to smile when this antique test appears after such technological wizardry) the analysis of footprint traces from rats with inky feet shows that chondroitinase ABC preserves normal gait after animals with spinal lesions, unlike controls. Chondroitinase ABC does not restore full anatomical connectivity across injured cord lesions. But it does so sufficiently to support a very real and useful improvement in function.

NERVE REPAIR

★★★ RECOMMENDED

Acute stroke: no Nogo = go?

Nogo-A, originally known as NI-250, is a myelin-associated glycoprotein, originally characterised by Martin Schwab and colleagues, which inhibits neurite growth and causes growth cone collapse. A monoclonal antibody (mAb) to this protein, IN-1, was produced some years ago, and has been shown to promote CNS functional regeneration following various experimental lesions in neonatal and adult rats, as a consequence of axonal regeneration and/or neuroanatomical plasticity of uninjured pathways. The effects of IN-1 in acute stroke have now been examined.

Adult rats underwent unilateral middle cerebral artery occlusion (MCAO); some received IN-1 given by hybridoma xenograft, others a control mAb, others no treatment (all received cyclosporin immunosuppression, necessary to block rejection of the grafts). Although stroke volume examined eight weeks postlesion did not differ between the groups, the animals receiving IN-1 showed 80% recovery of prelesion behavioural performance in a forelimb reaching task (grasping sucrose pellets), whereas the recovery in controls reached only 50% of baseline values. Anatomical studies showed that neuroanatomical plasticity paralleled functional recovery, with the development of increased projections from the intact primary motor cortex to the contralateral red nucleus (the corticorubral projection in rats is mostly ipsilateral).

Of course caution is appropriate in interpreting these findings, since there are many claims for treatments that improve outcome from MCAO in experimental animals, some of which have failed to translate to the clinical arena. However this study does suggest that the CNS has regenerative potential which it exploited, by providing a permissive environment for axonal growth by blocking growth inhibitory factors, may lead to meaningful functional recovery.

Papadopoulos CM, Tsai S-Y, Alsbiei T, O’Brien TE, Schwab ME, Kartje GL.

Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat.

ANNALS OF NEUROLOGY
2002;51(4): 433-441

★★★ RECOMMENDED

Adult neural stem cells are useful

These two recent papers have demonstrated that adult neural stem cells do form functional neurons. There has been a long standing debate as to whether the cells labelled in the adult mammalian brain with markers of proliferation, such as BrdU, are of any functional significance. Last year it was demonstrated by Shors et al that inhibiting dividing cells in the adult brain of rodents could affect trace memory formation (Shors TJ et al (2001) Nature...
However this was only circumstantial evidence to support the contention that adult neural stem cells (NSCs) can be incorporated into host circuits with functional effects. Now Gage and colleagues have shown that adult rodent NSCs can form functionally active neurons in vitro and Frisen and colleagues have done the same in vivo.

Song et al took GFP labeled adult NSCs and studied them in vitro for their intrinsic electrical properties; capacity to respond to synaptic stimuli and the release of neurotransmitter. This is a beautiful, elegant and extensive study as is typical from the Gage laboratory, and is a tour de force of scientific work. In all cases the GFP NSC were shown to be similar to the primary embryonic neurons, although this was contingent on how the cells were grown - for example the nature of the substrate used in culture and the use of BDNF.

The study by Frisen et al took a different approach using BrdU to label the endogenous NSC population, and then trace their connections using specific viral vectors linked to GFP. This demonstrated that BrdU positive cells could be incorporated into circuits, both in the olfactory bulb and hippocampus, and that, in the case of the olfactory system, they responded to olfactory stimulation.

These two studies are important in highlighting that adult NSCs can differentiate into electrically active neurons and become incorporated into functional circuitry in the adult mammalian brain. The question that now needs answering is what regulates this process physiologically and what is its role - RAB

Song H-J, Stevens CF, Gage FH. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. NATURE NEUROSCIENCE 2002 5: 438-445

Evidence for effectiveness of intervention for cognitive deficits is often limited to single case experiments. The need for individualisation of treatment and the length of time that training takes limits the number of cases that can be studied in any one centre. A newly published memory training study has pooled resources from 7 centres in Europe so that the effect of using imagery as a strategy for improving memory in 21 brain-damaged patients was assessed. Imagery proved to be an effective and useful strategy for patients with mild to moderate memory impairment.

Patients with mild memory impairment such that it might prevent effectiveness of intervention for cognitive deficits is often limited to single case experiments. The need for individualisation of treatment and the length of time that training takes limits the number of cases that can be studied in any one centre. A newly published memory training study has pooled resources from 7 centres in Europe so that the effect of using imagery as a strategy for improving memory in 21 brain-damaged patients was assessed. Imagery proved to be an effective and useful strategy for patients with mild to moderate memory impairment.

Picture this - I must remember to E.T (phone home)
performance on some of them. The results were in keeping with the researchers' predictions. Imagery training significantly improved recall of everyday verbal materials, e.g. stories, appointments and the frequency of memory problems observed by relatives was reduced. What's more these effects lasted over the follow up period.

There is strength in numbers. This study will carry more weight than 20 reports of n=1 studies that might be produced over years. Rehabilitation research into cognitive deficits must benefit from collaborative studies such as this one.-AJT

Imagery mnemonics for the rehabilitation of memory: a randomised group controlled trial.

NEUROPSYCHOLOGICAL REHABILITATION 2002: 12: 127-153

EPILEPSY

RECOMMENDED

Do seizures damage the brain?

This longstanding debate remains without a clear answer but the current study does move it forward. It has long been known that the hippocampus is damaged by seizures in animals and that severe acute insults can damage the hippocampus in humans. Studies are complicated by complicating factors such as head injury from seizures and bouts of status epilepticus. What is not known is whether recurring seizures themselves cause a progressive deficit.

In this study 24 patients with well-localised TLE were followed from diagnosis and subjected to repeat MRI scans with hippocampal volume measurements after 3.5 years. The diagnosis of TLE was made on the basis of EEG and clinical criteria and all patients had a normal initial MRI. They were 30 +/- 14 years of age, so not in the usual age group for hippocampal sclerosis (HS) to be the cause of their seizures.

Epilepsy was generally mild and 15 patients had 0-1 generalised tonic clonic seizures (GTCS) and 9 had 2-8 GTCS during the follow-up period. One patient developed clear signs of hippocampal sclerosis on MRI and the others developed signs of hippocampal volume loss, of the order of 10-25%, which correlated strongly with the number of GTCS during follow-up.

This study provides evidence that even quite mild epilepsy can be damaging to the hippocampus and supports the century old view of the imperative to treat early. The hippocampus is however, a uniquely sensitive structure and whether this can be extrapolated to extratemporal epilepsy or whether the generalised epilepsies carry the same kinds of risks is even less clear.—MRAM

Briellmann RS, Berkovic SF, Syngeniotis A, King MA, Jackson GD.

Seizure-associated hippocampal volume loss: A longitudinal magnetic resonance study at temporal lobe epilepsy.

ANNALS OF NEUROLOGY 2002;51:641-4

To stop frowning on EEGs..............

Presurgical localisation of epilepsy hinges on accurate recording of electrographic seizure onset. A number of factors may hinder recordings and commonly artefact arising from scalp muscles from ictal motor activity is responsible. Traditionally the way to overcome this is to insert electrodes intracranially. The authors reduced scalp muscle activity by injecting botulinum-A (BTX) 100 units between temporals and frontals muscles. A week later patients underwent EEG and were asked to perform various facial contortions. If there was still significant artefact on EEG, a further 50-100 units were injected into muscles responsible.

Twenty-four seizures were recorded in 3 patients, 12 before and 12 after BTX injection. They were reported blind. Prior to BTX only one seizure was localisable (3 localisable) whereas afterwards 8 were localisable. There were no adverse effects and muscle activity returned to normal after 8, 11 and 15 weeks.

The authors should be congratulated on lateral thinking to try and solve a problem with a benign, readily available procedure, potentially avoiding highly invasive intracranial EEG. How widely applicable this will be remains to be seen.—MRAM

Eisenschrenk R, Uhman B, Valenstein E, Gonzalez R.

Botulinum toxin-induced paralysis of frontotemporal muscles improves seizure focus localisation.

NEUROLOGY 2002;58:246-249

Stopping heart stop

The central nervous system has well-established effects on the heart. A hierarchy of autonomic control is recognised involving cortical levels of modulation. It is therefore perhaps not surprising that epilepsy can result in changes of cardiovascular physiology. However, the precise dynamics are not well understood and need to be elucidated in view of their potential role in sudden unexpected death in epileptic patients (SUDEP). Surges of sympathetic outflow have been postulated to occur during seizures, which may then contribute, to the pathophysiology of SUDEP. Temporal lobe epilepsy is particularly troublesome in causing changes in autonomic activity and case reports of ictal associated tachycardia or bradycardias are frequently documented. Interestingly interictal changes of sympathetic cardiovascular tone have also been demonstrated.

To address this relationship further, Hilz and colleagues have studied autonomic parameters before and after surgery in 18 TLE patients. Variability of heart rate and blood pressure were determined (power spectral analysis) incorporating changes attributable to respiration.

Each signal had a combination of high and low frequency analysis. Calculation of baroreceptor sensitivity was also performed derived from the relationship between these parameters. The standard measures of cardiovascular function did not change. Low frequency components of HR and BP showed an average reduction of over 40% following surgery. Baroreceptor sensitivity also changed. This supports the conclusion that sympathetic tone is augmented in TLE patients. This is a reassuring study and implies that surgery should be accompanied by a reduced risk of cardiovascular emergencies in epilepsy patients.—JL

Hilz A, Devinsky O, Maurer A and Dutsch M.

Decrease of sympathetic cardiovascular modulation after temporal lobe epilepsy surgery.

BRAIN 2002: 125:985-995

MULTIPLE SCLEROSIS

RECOMMENDED

Independent COMparisons of Interferons - INCOMIN: Alternate day Interferon beta-1b versus weekly Interferon beta-1a

In a world where evidence based medicine requires very large randomised double blind placebo controlled studies, direct comparisons between two similar drugs from different manufacturers are rare. Even more so if such a study is completely independent of any sponsorship or links in some form or other to one of the firms concerned. It is therefore pleasing to see that the INCOMIN trial study group has been able to undertake a direct comparison study of two of the three available interferons for relapsing remit-
tting multiple sclerosis as they are currently licensed, guiding our prescription habits in an evidence based manner, albeit with relatively small numbers. The basic protocol employed in this independent study was a 2-year prospective randomised multi-centre study with 96 patients in the beta-1b, alternate day administration, (Betaferon) limb and 92 patients in the beta-1a, weekly (Avonex) limb of the study. Outcome measures were proportion of patients remaining relapse free, clinically and radiologically (no new proton density/T2 lesions). In those receiving alternate day therapy 51% remained relapse free compared to 36% receiving weekly treatment (relative risk 0.76, p=0.03) and similarly 55% developed no new radiological lesions compared to 26% (relative risk 0.6, p<0.0003). On these grounds alternate day therapy is superior in effect. However, unsurprisingly injection site reactions were significantly more common in the alternate day group but this did not impact on compliance and could be minimised by improved injection technique, the authors suggest. Significantly more patients in the alternate day group generated neutralising antibodies, which adds to the controversy of the role of these antibodies. The observed increased effectiveness in the presence of increased antibody formation would support the argument that these antibodies do not have any effect on the treatment response.

The study design does not allow comparisons to be drawn about which agent is more potent (and clearly does not involve the third commercially available interferon-beta, Rebif) but does suggest that the frequency of administration maybe crucial. -TH

Type 1 diabetes mellitus (DM) and multiple sclerosis (MS) in Sardinia

This relatively simple cohort epidemiological study undertaken in Sardinian families with MS reveals a surprising finding when compared to studies on other populations but does raise some interesting observations about the genetics of MS in this population. Sardinians are at high risk of developing MS and DM. This study demonstrates that epidemiologically there is a link in this population between these two autoimmune diseases, with DM being three-fold more prevalent in patients with MS compared with their healthy siblings but importantly DM was found to be five-fold more prevalent than the general population. At first sight this observation may be at odds with most Northern European studies with DM being more prevalent in patients with MS compared with their healthy siblings but importantly DM was found to be five-fold more prevalent than the general population. Further examination of HLA haplotypes in Sardinian and other Northern European populations, some sense can be made of this apparent contradiction. Coraddu et al found that the most prevalent HLA haplotype profile of the Sardinian population with MS was DRB1*0301-DQA1*0501-B1*0201 which is different from other MS populations where the haplotype (DRB1*1501-DQA1*0102-B1*0602) is more common. This latter haplotype in fact bestows protection against DM and susceptibility to MS, whereas the Sardinian haplotype is a known risk factor for DM and other autoimmune diseases such as coeliac disease, autoimmune thyroiditis, Addison’s disease and atrophic gastritis. So, together with the HLA haplotype profile and epidemiological evidence from this study, common genes are implicated in the susceptibility to both diseases in this population and the genes may be located in or around the HLA region. -TH

Marrosu MG, Cocco E, Spinici G, Fischella Contu P. Patients With Multiple Sclerosis And Risk Of Type 1 Diabetes Mellitus In Sardinia, Italy: A Cohort Study. LANCET 2002; 359: 1461-65

T cells attack MOG

We have yet to identify the antigen targeted by the immune system in multiple sclerosis (MS). Myelin basic protein (MBP) and proteolipid protein (PLP) are both major constituents of myelin in the peripheral and central nervous system. They are therefore not ideal candidate antigens for a condition confined to the CNS. Myelin oligodendrocyte glycoprotein (MOG) is a quantitatively minor constituent of myelin present exclusively within the central nervous system, and therefore an interesting protein to investigate in the context of MS.

Koehler et al recruited four sibling pairs discordant for MS, One of the MS affected sibs had been treated with interferon-beta. All sibs within a given family were haplo-identical. MOG reactive T cell clones (TCC) were generated by culturing the cells in the presence of MOG proteins. TCCs were then incubated with antigen presenting cells and 11 synthetic MOG peptides (all representing portions of the extracellular domain of the MOG peptide) or recombinant MOG protein. The cytokines produced were quantified by the use of ELISAs and cell phenotype was established using flow cytometry.

A total of 235 TCCs reactive to MOG peptide were isolated in the cohort overall, although only four from the patient treated with interferon-beta. All the TCCs were CD4+. Challenging the TCCs with the 11 MOG epitopes in proliferation assays revealed no single dominant epitope shared between subjects, or even haplotype-paired sibs. The cytokines produced by the TCCs on exposure to MOG varied between individuals. TCCs from one MS affected sibling produced a Th1 (cytotoxic- IFN---and TNF---) pattern of cytokines. This was not seen in the unaffected siblings in whom a mixture of profiles was identified - Th2 (predominately IL-4), Th0 (IL-4 and IL-6) and Tr1 (regulatory- IL-10). The pattern of cytokines produced remained consistent despite repeated stimulation.

This paper reports the presence of MOG reactive T cells in nar-

Complimentary Journals Reviewed

We would like to thank the following publishers who have provided us with complimentary review subscriptions to their journals. For subscription details please contact the relevant publisher direct.

Cerebrovascular Diseases, Neuroepidemiology

Cerebral Cortex
Oxford University Press, Great Clarendon Street, Oxford, OX2 6DP, Tel. 01865 267154, Fax 01865 267985.

Clinical Rehabilitation, Multiple Sclerosis
Arnold, 338 Euston Road, London NW1 3BH. Tel. 020 7873 6339, Fax 020 7873 6325, E-Mail: amd@arnold.co.uk, www.arnoldpublishers.com/journals

Current Opinion in Neurology
Lippincott Williams & Wilkins, 241 Borough High Street, London, SE1 1GB. Tel 0207 940 7564, Fax 0207 940 7530

Email: moslacht@lww.co.uk, www.Lww.co.uk

Epilepsia
Blackwell Publishing, Commerce Place, 350 Main Street, Malden, MA 02148-5018, USA. Tel. 888 661 5800, Fax. 781 388 8270, www.blackwellpublishing.com/epi
mal healthy individuals and those with MS (reduced in number in interferon-beta treatment). It identifies no single immunodominant epitope on MOG and demonstrates that TCCs from healthy and MS slits produce different cytokine profiles on stimulation. The authors speculate that the loss of regulatory control of these MOG reactive T cells could result in demyelination. Unfortunately the cohort studied in this paper was too small to draw conclusions about the pathogenesis of MS, except to identify this as a protein worthy of further investigation. -ALC

Chips in Multiple Sclerosis

Gene chips are the technological cutting edge of gene expression analysis. One chip allows the simultaneous analysis of expression of tens of thousands of genes. They are relatively easy to use, but their results present a considerable bioinformatics headache! Other gene expression techniques (such as SAGE) are harder to use, but have the advantage over chips that they can pick up unknown genes, whereas chips rely on a library of known genes and expressed sequence tags.

Lock et al. used Affymetrix chips to compare genes expressed in CNS lesions from 4 patients with MS, and two controls without neuropathology. The four MS samples were classified histologically.

Differences in gene expression between MS and control samples were identified. Of the genes that were up regulated, a number of cytokine activity were also up regulated in all MS lesions. There was an elevation in several stress related genes and genes reflecting astrocyte activity. Of the genes that were down regulated the most significant were those associated with myelin proteins and neuron specific genes such as proteolipid protein and neuronal growth protein.

Differing gene expression was identified between the acute and chronic lesions. Genes elevated in the acute lesions included variable-joining-constant region immunoglobulin (125 fold), a MAP kinase and various growth factors including insulin growth factor-1 and G-CSF. In the chronic lesions, integrin α was elevated. Various gene transcripts associated with Th2 or allergic response were also elevated including the histamine receptor H1, IgE receptor and IgG Fc receptor. In addition a number of matrix metalloproteinases (MMP) were elevated, IL-17 and various neuroendocrine molecules.

One of these proteins was tested therapeutically using an animal model of demyelination - experimental allergic encephalomyelitis (EAE). G-CSF (elevated 13 fold in acute compared with chronic lesions) given prior to onset of EAE prolonged time to disease onset and reduced the severity of the acute phase of the disease. Also the role of IgG Fc receptor was tested, as its expression was elevated in chronic lesions; in Fc receptor knockout mice the chronic phase of EAE became less severe.

This study demonstrates the power of gene chip analysis to monitor the dynamics of gene expression changes between tissues, and will probably be the best way to investigate the mechanisms of action of the susceptibility alleles identified by genome studies. Also, such studies may identify potential therapeutic targets for disease modification in MS. -ALC
Localization in Clinical Neurology 4th edition

As an SHO considering whether or not to pursue a career in neurology, I noted my registrar (Hugh Willison) reading a weighty tome entitled Localization in Clinical Neurology. Evidently this was required reading for the budding neurologist, as I purchased a copy (3rd edition). Its now degraded pages, crumbling spine, capsicuous marginalia, and multiple index additions attest to my frequent recourse to it over the years. I believe I have learned more from its pages than any other neurology text, hence it is one of my favourite books. That others feel similarly may be indicated by the fact that it is the only one of my neurology books ever to have been stolen (by person(s) unknown), which I was fortunate to recover quite by chance, lurking in a filing cabinet it had no purpose to be in. Does this new edition amount to a steal?

Uncompromisingly, the authors state at the outset, in a new chapter discussing the general principles of localization, that the "key to localization" and "the roadmap for a correct assessment" is neuroanatomy (so admirably served by the primer in ACNR). Chapters then proceed, as in previous editions, centripetally from peripheral nerves to cerebral hemispheres, the last chapter devoted to the ocular motor system. The text is clear and coherent, perhaps reflecting the restricted authorship, now so unusual in major neurology books. The text is supplemented with line diagrams and tables, but there is no neuroimaging, congruent with the authors’ hope, stated in the preface, that diagnosis be achieved at the least cost and avoiding unnecessary testing. The whole work remains, as originally conceived, primarily for the clinician, a manifesto for the importance of the clinical method supplemented by modern paraclinical (particularly imaging) methods, rather than vice versa.

More than any other neurology text with which I am familiar, this book conveys the scope of clinical phenome-

nology and its potential value in making inferences about the anatomical location of pathology, the critical step in focusing subsequent investigations. The major (and unfor-givable) deficiency is the index: slimmed considerably from the previous edition, it misses page references to some topics and omits many headings. For those dipping into the book, rather than reading systematically (the majority, I would suspect), this will profoundly impair the utility of the book. At £102.00 it is not cheap but, index notwithstanding, to my way of thinking it represents excellent value for money for the reader prepared to engage with it. Highly recommended.

AJ Larner

Neuropsychological sequelae of subarachnoid hemorrhage and its treatment

This book is claimed to be the first monograph on the sub-
ject of the neuropsychological sequelae of subarachnoid haemorrhage (SAH), stemming from the author’s research-

es over the past decade in Aachen. The findings are dis-

turbing. Although many patients are judged to make an
recovery compared with spontaneous non-traumatic SAH

A corollary of this finding is that surgery may have advan-

ces in the acute or chronic stage suggest the pattern of
deficits is static.

The pattern and severity of abnormalities correlates poorly with morphological damage seen with structural imaging (CT, MR). Hence the morphological substrate of the observed deficits is attributed to diffuse damage of parasitellar grey substance, with fronto-basal emphasis, rather than a focal lesion dependent on aneurysm location. The prevalent idea that anterior communicating artery aneurysms are most prone to cause memory deficit and psych-organics syndromes of Korsakoff type is rejected as a corollary of this finding is that surgery may have advan-
tages over newer (and expensive) endovascular coiling techniques by removing subarachnoid blood. No addi-
tional damaging effects of surgical intervention were iden-
tified.

This is a challenging book which should be read by all
involved in the management of patients with SAH. Regrettably the translation is not into idiomatic English, which makes for a rather bumpy read, and there is no index, deficiencies which might profitably be redressed in a second edition.
Siemens signs academic partnerships

Siemens is forging even closer partnerships with clinical research sites and academic institutions. For example, within the UK, neurological research will be carried out at the Functional Imaging Laboratory (FIL), London on a new MAGNETOM 3T Allegra and a 1.5T High Gradient MAGNETOM Sonata.

Siemens has also just announced they have formed a strategic alliance with the New York University Medical Centre. The contract features a seven-year agreement using the Iselin, NJ based vendor as the exclusive supplier of radiology equipment for the hospital’s diagnostic and interventional radiology programmes.

The agreement covers 100 clinical imaging systems, as well as research units such as a 7-tesla MRI magnet, which will be housed at a new MR research facility located near NYU’s mid-town Manhattan campus. NYU Medical Centre Manhattan, an affiliate Hospital for Joint Diseases, is also a party to the agreement.

For further information contact Mike Bell, Siemens Medical Solutions on Tel. 01344 396317.

The Siemens MAGNETOM Sonata, Maestro class used for cardiac and neuro research.

VDS trial beats expectations

Dendron has announced that the trial of the variable detachment coil (VDS) is beating expectations. The product is unique in that it has three detachment points, therefore reducing the need to use extra coils in larger aneurysms and also providing a safe final coil – alleviating the risk of leaving part of the coil extending into the vessel.

The trial has been extended to three further sites as well as Hamburg and Glasgow. These are Zurich, Beijing and Ancona. It is planned to publish the results of this trial at the Symposium neuroradiologicum in Paris this coming August. The product will be added to the EDC II range which are freely available now.

Please contact Guy Tuck at Neurotechnics Ltd to receive a CD Rom of the latest Embolisation coil technology from Dendron. Tel. 01844 260777, Fax. 01844 260778, E-Mail guy.tuck@neuro-technics.com

New MR contrast agent from Schering

Gadovist 1.0 (gadobutrol) is a new extracellular contrast agent developed by Schering for intravenous use in spinal and cranial MRI.

According to Schering, Gadovist is unique because its 1.0 molar concentration is twice that of routinely used gadolinium-based agents. Like Magnevist (gadopentetate dimeglumine), a 1.0 molar concentration not only offers the practical advantage of a smaller injection volume, but also provides a sharper bolus of contrast agent and enhanced image quality. This is said to make Gadovist a promising candidate for high dose applications and techniques that depend more heavily on bolus geometry, i.e. dynamic imaging and first pass techniques such as brain perfusion.

Gadovist is expected to become an important tool for radiologists in tumour diagnosis, stroke assessment and multiple sclerosis imaging.

The new contrast agent will be available in the UK in vials from July and pre-filled syringes later in the year.

For further information contact Chris Matthews at Schering Healthcare on Tel. 01444 232323.

Clinical Neuroscience and Therapeutic Principles 3rd edition

Diseases of the Nervous System 2 Volume Set, Edited by Arthur Asbury et al

Cambridge University Press have just published the third edition of a neurology classic.

This two-volume reference encapsulates epidemiology, pathophysiology, and clinical features of the complete range of neurological disorders. The basic principles of neurological dysfunction are covered at cellular and molecular level by leading international experts in the field. Disease mechanisms are reviewed comprehensively, with particular relevance to the principles of therapy.

Current, comprehensive and authoritative, this is said by Cambridge University Press to be the definitive reference for neurologists, neurosurgeons, neuropsychiatrists, and psychiatrists, indeed everyone with a professional or research interest in the neurosciences.

As a special introductory offer, readers of ACNR can order the 2 volume set at the introductory price of £250 (£295.00 after November 2002). For further information contact Gurdeep Pannu at Cambridge University Press on Tel. 01223 312393.

Epilepsy Information Network

For many years the National Society for Epilepsy has recognised the importance of providing information and support to people with epilepsy within their own community. Following pilot schemes in Nottingham, it was decided to provide epilepsy information on a regional basis. This led to the creation of the Epilepsy Information Network just over a year ago, funded by the Community Fund (National Lottery) and UCB Pharma.

The Epilepsy Information Network provides information to people with epilepsy, their families, carers and others within the local community. It does this through Epilepsy Information Services in hospital-based neurology clinics around the country. The service offers people the opportunity to talk to trained volunteers in an informal setting. It is now available in 25 clinics throughout the country, with more than 75 trained volunteers.

In future, it is hoped that volunteers will be able to take information into other settings, such as schools, to help raise awareness of epilepsy and reduce the prejudice that is still experienced by many people.

For further information contact the National Society for Epilepsy on Tel. 01494 601391.

READER OFFER
FOCUS ON REHABILITATION

Royal Hospital for Neuro-disability

The Royal Hospital for Neuro-disability is a national charity providing treatment and care for people with complex disabilities resulting from disorders or injuries to the brain. The Hospital founded the UK’s first brain damage unit that has both a national and international reputation for its treatment of patients in vegetative state. As well as long term care and day services, specialist units include a Profound Brain Injury Unit, Neuro-rehabilitation and Disability Management, Neuro-behavioural Rehabilitation, Transitional Living Unit, Huntington’s Disease Service and a new Ventilator Unit. The Hospital also runs nationally and university accredited courses from IT training, to specialist rehabilitation techniques, and BSc (Hons) Neuro-disability Studies. The programme of multidisciplinary conferences includes one on 1st October at Kensington Town Hall, London, to examine issues relating to violence, particularly in the work environment.

A powerful movement in rehab

What can be more painful than seeing a patient’s progress wane? Traditional rehabilitation can lead to frustration and become unbearable for many patients and their families. VIASYS healthcare, a leader in neurodiagnostics, has introduced what they believe to be a revolution in rehabilitation. MotoVate helps patients work for longer, gives direct feedback but most importantly, gets results.

MotoVate combines computer games with surface electromyography to give direct feedback to patients as they undergo therapy. Therapists place surface electrodes on targeted muscles; the patient can then be taught that contracting or relaxing muscles controls the game they have chosen. The system can be calibrated to work with the smallest of movements or made more difficult as treatment progresses. As the patients progress through the game, they see their clinical improvement in real time.

The compelling nature of computer games means that MotoVate can encourage patients to use almost any muscle. Such a valuable tool helps with many conditions including stroke, brain injury, cerebral palsy, orthopaedic injuries to name just a few and is ideal for use with children and the elderly alike.

For more information on MotoVate contact; Jane Glover, VIASYS Healthcare, Welton Road, Warwick. CV34 5XH. Tel 01926 838503, E-Mail. jglover@viasyshc.c.uk

Essential guide to real-time motion capture

Codamotion, from Charnwood Dynamics, is a real-time motion capture and analysis system. The company has launched a comprehensive CD-ROM that guides the operator through the features and benefits of a system that is used in diverse scientific and clinical areas, sports technology, biomechanics, industrial processes and animation. The CD contains more than 150 screens with a logical navigation sequence, illustrated with more than 50 video sequences and animations. The contents include a products section providing an overview of the system, the hardware and software, along with the interfacing capabilities to enable integration with existing systems. The Applications section describes Codamotion’s use in a number of areas including clinical applications, scientific research, sport, animation and industrial processes. Also included is a selection of case studies, covering areas such as gait analysis, biomechanics, research into human movement, the measurement and analysis of sports performance, industrial and space technologies and animation.

The resources section covers functions such as setting up a movement laboratory, the mathematics of segmental gait analysis, a movement analysis software demonstration and a full system explanation with a PDF form of the Codamotion User Manual. Also featured is the Codamotion Software Development Kit (SDK), along with web-links, a glossary of terms and a history of motion analysis techniques.

For more information, or a free copy of the CD, E-Mail. davina@charndyn.com

Lightwriter Communication Aids now on EAT Contract

Toby Churchill Ltd were exhibiting their range of communication aids at the exhibition in Brighton. The company is the only communication-aid manufacturer run by someone who is himself physically and speech-disabled, the user of a communication aid, and also the designer of the products. The company believe that this unique combination gives them a deeper understanding of the particular needs of the speech disabled and helps them design better products.

Lightwriters are small portable text-to-speech communication aids specially designed to meet the particular needs of people with speech loss and to cater with progressive conditions. Lightwriters are widely used by people with acquired speech disorders following laryngectomy, head injury, stroke, or with progressive neurological diseases such as Motor Neurone Disease, Parkinson’s Disease, and Multiple Sclerosis. Lightwriters are also used by people with congenital speech disorders with conditions such as Cerebral Palsy.

The Lightwriter range is now available on NHS Electronic Assistive Technology Contract. For more information contact Toby Churchill Ltd. Tel. 01223 576117, Fax. 01223 576118, E-Mail. sales@toby-churchill.com

Lightwriter Communication Aids now on EAT Contract

Toby Churchill Ltd were exhibiting their range of communication aids at the exhibition in Brighton. The company is the only communication-aid manufacturer run by someone who is himself physically and speech-disabled, the user of a communication aid, and also the designer of the products. The company believe that this unique combination gives them a deeper understanding of the particular needs of the speech disabled and helps them design better products.

Lightwriters are small portable text-to-speech communication aids specially designed to meet the particular needs of people with speech loss and to cater with progressive conditions. Lightwriters are widely used by people with acquired speech disorders following laryngectomy, head injury, stroke, or with progressive neurological diseases such as Motor Neurone Disease, Parkinson’s Disease, and Multiple Sclerosis. Lightwriters are also used by people with congenital speech disorders with conditions such as Cerebral Palsy.

The Lightwriter range is now available on NHS Electronic Assistive Technology Contract. For more information contact Toby Churchill Ltd. Tel. 01223 576117, Fax. 01223 576118, E-Mail. sales@toby-churchill.com
Guillain-Barré Support Group

Guillain-Barré Syndrome (GBS) is not a specific illness but a clinical syndrome, an aggregate of symptoms. It is an illness of the peripheral nervous system, a peripheral neuropathy. There are many causes – symptoms of weakness and/or altered sensations are typical as motor and/or sensory nerves become affected.

GBS is an acute illness. There are around 1000-1500 new cases every year in the UK, and apart from in the elderly population, it is the most common form of acute paralysis.

The GBS support group was founded in 1985 by Glennis Sanders to provide a lifeline to sufferers of GBS and CIDP, and to their families and friends. The group provides information about the illnesses and can provide local contacts, usually hospital and at home. In addition, the group continuously strives to increase awareness of the syndrome among the medical professions and the public. Over the years, large sums of money have been raised to fund research into GBS and for other projects.

For more information E-Mail: admin@gbs.org.uk or Tel. 01529 304615.

Optimising outcomes in spasticity management

At the ECPRM Professor Majid Bakheit, well known for his work with botulinum toxin, chaired a symposium sponsored by Ipsen Ltd.

Dr. Peter Moore reviewed the evidence for botulinum toxin in the management of adult spasticity. Although there are consistent reports of spasticity being significantly reduced throughout the literature, demonstrations of this translating into functional patient benefit are sparse.

Professor Lynne Turner Stokes propounded the concept of active and passive function. In most clinical trials the outcomes measured are those of active function, but passive functional changes may have greater controls for the patient’s QOL. She presented a case study, which illustrated a substantial cost saving following BoNT-A treatment, resulting in reduced carer burden.

Davina Richardson highlighted the value of individualised goal setting in rehabilitation and the need for all professionals involved in patient care to work together as a team.

These presentations were well received by an audience of some 170 and generated interesting discussion.

For further information contact Alex Olszansko-Homer, Ipsen Ltd on Tel. 01733 627777.

SRS technology are offering a free copy of In Control: The Ultimate Guide to Environmental Control Systems for Independent Living (normally £4.95). The book provides an overview of the environmental controls market, detail on how such systems operate and what they can be used for. Its non-technical, user-focused approach means the book is an excellent reference source for healthcare professionals who make recommendations and provide advice to clients about these systems.

Practical training: If you are looking for practical training, SRS also have the answer. A series of one day seminars throughout the UK will provide a comprehensive overview of the issues to be considered when assessing an individual’s requirements for environmental controls. Dr Mohammed Salek, a registrar based in Coventry, attended the first session. He says, “It was very instructive. Environmental Controls are an important part of our training, and this course provides a really good overview of all the products available and when they are most appropriate to prescribe. The information on alternative sources of funding was also useful. I would definitely recommend the course.”

Alternative sources of funding: SRS can provide you with information about alternative sources of funding for environmental control systems. This is available at the one-day training sessions, or direct from SRS Technology.

For further information contact Rebecca Atsersen on Tel. 01922 436882, or use the reader enquiry service included with this magazine.

British Society of Rehabilitation Medicine

The BSRM is the UK professional organisation for practitioners in Rehabilitation Medicine and is devoted to: Promoting the development and good practice of Rehabilitation Medicine as a medical specialty; Enhancing undergraduate and postgraduate education in rehabilitation and disability issues; Supporting rehabilitation research; Liaising with related medical, paramedical and voluntary organisations to further these aims.

Membership is open to registered medical practitioners with an interest in disability and its management.

Membership benefits include: Reduced subscription to Clinical Rehabilitation; Reduced registration fees at BSRM meetings/courses; Complimentary copies of BSRM publications and newsletters; Participation in regional groups’ events; Opportunities to contribute to national debates and influence decisions of statutory bodies on issues related to Rehabilitation Medicine; Membership of Special Interest Groups (Amputee Medicine & Electronic Assistive Technology).

Upcoming meetings:

10-13 September 2002 in Nottingham – ‘5th BSRM/University of Nottingham Advanced Rehabilitation Course’
25 November 2002 in London - ‘Practical Approaches to Managing Fatigue Problems in Rehabilitation’

For more information contact British Society of Rehabilitation Medicine, C/o the Royal College of Physicians, 11 St Andrews Place, London NW1 4LE Tel. 01992 638865, or see www.bsm.co.uk.
REQUIP (ropinirole) Prescribing Information

Presentation
‘Requip’ Tablets, PL 10592/0085, 0087-0089, each containing ropinirole hydrochloride equivalent to either 0.25, 1, 2 or 5 mg ropinirole. 0.25 mg tablets - 210 tablets starter pack, £43.12; 1 mg tablets - 84 tablets, £46.20; 2 mg tablets - 84 tablets, £92.40; 5 mg tablets - 84 tablets, £184.80.

Indications
Treatment of idiopathic Parkinson’s disease. May be used alone (without L-dopa) or in addition to L-dopa to control “on-off” fluctuations and permit a reduction in the L-dopa dose.

Dosage
Adults:
Three times a day, with meals. Titrate dose against efficacy and tolerability. Initial dose for 1st week should be 0.25 mg t.i.d., 2nd week 0.5 mg t.i.d., 3rd week 0.75 mg t.i.d., 4th week 1 mg t.i.d., 5th week 1.5 mg t.i.d., 6th week 2 mg t.i.d., 7th week 2.5 mg t.i.d., 8th week 3 mg t.i.d.. Maximum dose - 10 mg t.i.d. Do not exceed 24 mg/day. Do not increase above 10 mg t.i.d. in the 1st week and 20 mg t.i.d. in the 2nd week. Adaptation of the dose is recommended.

Renal or hepatic impairment:
No change needed in mild to moderate renal impairment. Not studied in severe renal or hepatic impairment - administration not recommended.

Elderly:
Titrate dose in normal manner.

Contraindications
Hypersensitivity to ropinirole, pregnancy, lactation and women of child-bearing potential unless using adequate contraception.

Precautions
Caution advised in patients with severe cardiovascular disease and when co-administration with anti-hypertensive and anti-arrhythmic agents. Patients with major psychiatric disorders should be treated with dopamine agonists only if potential benefits outweigh the risks. Ropinirole has been associated with somnolence and episodes of sudden sleep onset. Patients must be informed of this and advised to exercise caution while driving or operating machines during treatment with ropinirole. Patients who have experienced somnolence and/or an episode of sudden sleep onset must refrain from driving or operating machines. Caution advised when taking other sedating medication or alcohol in combination with ropinirole. If sudden onset of sleep occurs, consider dose reduction or drug withdrawal.

Drug interactions
Neuroleptics and other centrally active dopamine antagonists may diminish effectiveness of ropinirole - avoid concurrent use. No dosage adjustment needed when co-administering with L-dopa or benserazide. No interaction seen with other Parkinson’s disease drugs but take care when adding ropinirole to treatment regimes. Other dopamine agonists may be used with caution. In a study with concurrent dopaminergic therapy, no interaction seen with ropinirole on plasma levels of ropinirole. CYP1A2 therefore potential for interaction with substrates or inhibitors of this enzyme. Ropinirole dose may need adjustment when these drugs are introduced or withdrawn. Increased plasma levels of ropinirole have been observed with high-dose digoxin treatment. In patients on hormone replacement therapy (HRT) dopamine treatment may be initiated in normal manner. However, if HRT is stopped or introduced during dopamine treatment, dosage adjustment may be required. No information on interaction with alcohol - as with other centrally active medications, caution patients against taking ropinirole with alcohol.

Pregnancy and lactation
Do not use during pregnancy - based on results of animal studies. There have been no studies of ropinirole in human pregnancy. Do not use in nursing mothers as lactation may be impaired. Review benefits and risks when planning pregnancy.

Effects on ability to drive and use machines
Patients being treated with ropinirole and presenting with somnolence and/or sudden sleep episodes must be informed to refrain from driving or engaging in activities where impaired alertness may put themselves or others at risk of serious injury or death (e.g. operating machinery). Sudden onset of sleep occurs in patients, consider dose reduction or drug withdrawal.

Overdosage
No incidences reported. Symptoms of overdose likely to be related to dopaminergic activity.

Product Licence holder SmithKline Beecham plc, Great West Road, Brentford Road, Middlesex, TW8 9BD

Date of preparation: May 2002

Ropinirole is a Registered Trademark of the GlaxoSmithKline Group of Companies.

Customer Services (UK) Limited 0845 010 0077

POM®

Finished yet dear?