In this issue

Alex J Mitchell
The Prognosis of Mild Cognitive Impairment - Is it Better than Expected?

Geraint Rees and Rimona Weil
How Does the Brain Fill-in the Visual World?

James M Gilchrist and George M Sachs
Longitudinal Neurophysiologic Assessment of Disease of the Peripheral Nervous System
Azilect® 1mg tablets

Prescribing information
(Please refer to the Summary of Product Characteristics (SmPC) before prescribing)

Presentation: Tablets containing 1mg rasagiline (as the mesilate).

Indication: Treatment of idiopathic Parkinson’s disease as monotherapy or as adjunct to levodopa in patients with end of dose fluctuations.

Dosage and administration:
Oral, 1mg once daily taken with or without food.

Elderly: No change in dosage required.

Children and adolescents (<18 years): Not recommended.

Patients with renal impairment: No change in dosage required.

Patients with hepatic impairment: Predominant hepatic metabolism. Do not use in patients with severe impairment. Avoid use in patients with moderate impairment. Do not use in patients with mild impairment and stop if progresses to moderate.

Contraindications: Hypersensitivity to the active substance or to any of the excipients. Do not use in patients with severe hepatic insufficiency. Co-administration of other monoamine oxidase (MAO) inhibitors is contraindicated due to risk of hypertensive crisis. Concomitant pethidine treatment is contraindicated. Allow at least 14 days off rasagiline before using other MAO inhibitors or pethidine.

Special warnings and precautions:
Administer antidepressants with caution as serious adverse reactions have been reported with concomitant use of selective serotonin reuptake inhibitors, tricyclic and tetracyclic antidepressants, MAO inhibitors and a selective MAO-B inhibitor. Avoid concomitant use with fluoxetine or fluvoxamine. Leave at least five weeks between discontinuation of fluoxetine and initiation of treatment with rasagiline. Leave at least 14 days between discontinuation of rasagiline and initiation of treatment with fluoxetine or fluvoxamine. Do not use in patients with moderate hepatic impairment. Use caution in patients with mild hepatic impairment. Use with caution in pregnancy or lactation. There is an increased risk of skin cancer in Parkinson’s disease, not associated with any particular drug. Suspicious skin lesions require specialist evaluation.

Undesirable effects in clinical trials:

Monotherapy: >1%: headache, flu syndrome, malaise, neck pain, dyspepsia, arthralgia, depression, conjunctivitis, allergic reaction, fever, angina pectoris, anorexia, leucopenia, arthritis, vertigo, rhinitis, contact dermatitis, vesiculobullous rash, skin carcinoma, hallucinations, urinary urgency. <1%: cerebrovascular accident, myocardial infarct, abdominal pain, accidental injury, postural hypotension, constipation, vomiting, weight loss, dyskinesia, neck pain, anorexia, dry mouth, arthralgia, tachycardia, dystonia, abnormal dreams, astasia, rash, hallucinations. <1%: angina pectoris, cerebrovascular accident, skin melanoma, confusion.

Please refer to the SmPC for a full list of adverse events.

Basic NHS Price: Azilect® (tablets) 1mg x 28 £70.72

Legal category: POM

Marketing Authorisation Number: 1mg tablets (28 pack size) EU/1/04/304/003

Marketing Authorisation Holder: Teva Pharma GmbH, Kandilstr 10, D-79199 Kirchzarten Germany

Date last revised: May 2008

Further information available from: Lundbeck Limited, Lundbeck House, Caldecotte Lake Business Park, Caldecotte, Milton Keynes, MK7 8LG

Adverse events should be reported. Reporting forms and information can be found at www.yellowcard.gov.uk. Adverse events should also be reported to Teva Pharmaceuticals Ltd on telephone number: 01296 719768.
Magstim Young Investigator Award and Poster Prizes

Pioneering research into the diagnosis and treatment of a number of neurological conditions through magnetic stimulation was recently celebrated at the 3rd annual Magstim TMS Summer School. The event, held in conjunction with University College London (UCL), saw the announcement of the Magstim Young Investigator Award and Poster Prizes.

Dr Charlie Stagg of the University of Oxford received the Young Investigator Award for her work in exploring the potential use of TMS and tDCS as post stroke rehabilitative therapies, whilst the 2009 Poster Prize was awarded to Marius Moisa of the Max Planck Institute for Biological Cybernetics, Germany. Mr Moisa and colleagues developed a novel method which combines TMS and continuous arterial spin labelling (CASL) for the first time as an alternative to more traditional imaging methods to assess the effect of TMS on brain connectivity. This new combination enables the measurement of both blood oxygenation level-dependent (BOLD) signal and blood perfusion, an important advantage when studying the effects of TMS on brain connectivity.

For more information E. andrew.thomas@magstim.com

Professor Rossor wins 2009 Bengt Winblad Lifetime Achievement Award

Professor Martin Rossor has been recognised by the The Alzheimer’s Association for his achievements in advancing Alzheimer's research. The 2009 Bengt Winblad Lifetime Achievement Award was awarded to Martin Rossor, MD, Head of the Division of Neurology and Director of the Dementia Research Centre at the UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London. Dr Rossor’s research includes studying familial Alzheimer’s disease and familial frontotemporal lobar degeneration. Longitudinal studies of at risk individuals from affected families has helped identify the first clinical and imaging changes that signal the onset of disease.

Competition Winners

Congratulations to the two winners of our competition, who will each win a copy of Parkinson’s Disease — Clinician’s Desk Reference from Manson Publishing. The winners were Tessa Bennett from Farnham Hospital, and Claire Robinson from the Birmingham Learning Disability Service. Thank you to Manson Publishing for providing the prizes.

New research grants for Research on Ring Chromosome 20 Syndrome

The first international symposium dedicated to the treatment of genetic epilepsy condition ring chromosome 20 syndromes took place at the 28th International Epilepsy Congress. Medical professionals from around the world specialising in the treatment of r(20) gathered with over 250 delegates to share new research findings and learn about upcoming research.

Three new research grant awards were presented to Antonia Gil-Nagel, MD from Spain, Franck Semah MD from France, and Nancy B. Spinner PhD from the USA. Ring chromosome 20 syndrome, r(20), is a chromosomal anomaly resulting from the joining of each end of chromosome 20 resulting in ring formation. This syndrome is characterised by medically intractable epilepsy, nocturnal subclinical seizures, behavioural problems and mild mental impairment. Dysmorphism is rarely reported. Unfortunately, diagnosis is missed or delayed due to under-utilisation of chromosomal testing in epilepsy patients. The symposium was filmed and will be available at www.ring20.org

International editorial liaison committee

Professor Riccardo Saffiotti, Italy: Chairman of the Neuro-Oncology Service, Dept of Neuroscience and Oncology, University and S. Giovanni Battista Hospital.

Professor Klaus Berek, Austria: Head of the Neurological Department of the KI Kufstein.

Professor Hermann Stefan, Germany: Professor of Neurology /Epileptology in the Department of Neurology, University Erlangen-Nürnberg.

Professor Nils Erik Gillius, Norway: Professor of Neurology at the University of Bergen and Haukeland University Hospital.

Magstim Summer School

As part of the Magstim Young Investigator Award, Professor Rossor was invited to co-teach the Magstim TMS Summer School. The event was held at UCL in conjunction with the University College in London, UK.

ACNR VOLUME 9 NUMBER 4 SEPTEMBER/OCTOBER 2009
CONTENTS
SEPTEMBER/OCTOBER 2009

03 Awards & Appointments
06 From the Editor...

Review Article
12 The Prognosis of Mild Cognitive Impairment - Is it Better than Expected?
Alex J Mitchell
16 How Does the Brain Fill-in the Visual World?
Geraint Rees, Rimona Weil

Personal Perspectives
16 Congenital Insensitivity to Pain
18 Book Reviews

Neurological Signs
20 Geophagia (Geophagy) and Pica (Pagophagia) – Andrew Larner

Neurophysiology Article
21 Longitudinal Neurophysiologic Assessment of Disease of the Peripheral Nervous System
James M Gilchrist, George M Sachs

Neuropathology Article
25 Recent Developments in the Pathology of Motor Neurone Disease
Alexander F Jeans, Olaf Ansorge

Famous Neurologists
28 Anita Harding – Alastair Compston

Controversies in Neurology
31 Epilepsy charity asks Department of Health to reconsider drug substitution plans

Research Series
32 The Research Forum – Beth Mallam, Dan Blackburn
Doing Research in the Post MMC World – Geraint Fuller

Regulars
35 Events Diary
37 Courses & Conferences
46 Journal Reviews
48 Neurology at the Movies – SF Ford, Andrew Larner

ABN Case Presentation Prize Winner
49 Chorea – Could the Plumbing be Humming? – Ian Golea

Association of British Neurological Trainees
50 The European Working Time Directive in Neurology – Time for Training?
Biba Stanton

Comment
51 A Reply to the ABNT
Paul Morrish
53 News Review
Zonegran is indicated as adjunctive therapy in the treatment of adult patients with partial seizures, with or without secondary generalisation.

Indication:
Adjunctive therapy in adult patients with partial seizures, with or without secondary generalisation.

Dose and Administration:
- Adult: Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration.
- Children and adolescents under 18 years: Not recommended.

Presentation:
- Hard capsules containing 25 mg, 50 mg or 100 mg zonisamide.

Dosage Forms:
- Zonegran® (zonisamide)
- Hard capsules containing 25 mg, 50 mg or 100 mg zonisamide.

Administration:
- In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals.
- Withdraw gradually.

Contraindications:
- Hypersensitivity to zonisamide, sulphonamide or any excipient.
- Pregnancy: Zonegran must not be used during pregnancy unless potential benefits justify the risks. Specialist advice should be sought.
- Caution (see SmPC). Not recommended in severe hepatic impairment.

Precautions:
- In patients who have: underlying conditions which might cause hypercalcuria. Evaluate and monitor serum bicarbonate levels prior stone formation, a family history of nephrolithiasis and hypercalcuria. Evaluate and monitor serum bicarbonate levels prior stone formation, a family history of nephrolithiasis and hypercalcuria.
- Drug interactions:
 - Zonegran contains a sulphonamide group which are associated with serious immune based adverse reactions. Closely supervise and consider disconnection in patients with unexplained rash. Cases of agranulocytosis, thrombocytopenia, leucopenia, aplastic anaemia, pancytopenia and leucocytosis have been reported. Monitor for signs of suicidal ideation and behaviour and appropriate treatment should be considered. Use with caution in patients with risk factors for nephrolithiasis, including prior stone formation, a family history of nephrolithiasis and hypercalcuria. Evaluate and monitor serum bicarbonate levels in patients who have: underlying conditions which might increase the risk of metabolic acidosis; increased risk of adverse consequences of metabolic acidosis; symptoms suggestive of metabolic acidosis. If metabolic acidosis develops and persists, consider reducing the dose, discontinuing or alkali treatment.

Dosage and Administration:
- Pregnancy:
 - Must be added to existing therapy. Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration. In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals. Withdraw gradually. Elderly and patients with renal or hepatic impairment: Caution (see SmPC). Not recommended in severe hepatic impairment. Children and adolescents under 18 years: Not recommended. Contra-Indications: Hypersensitivity to zonisamide, sulphonamide or any excipient.

Pregnancy:
- Caution (see SmPC). Not recommended in severe hepatic impairment.

Lactation:
- Excreted into breast milk. A decision must be made to either discontinue Zonegran or breast-feeding.

Drug Interactions:
- Zonegran is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis. Zonisamide is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis.

Adverse Events:
- When you want to add to monotherapy efficacy:
 - Go straight from A to Zonegran

ABBREVIATED PRESCRIBING INFORMATION
Zonegran® (zonisamide)
Please refer to the SmPC before prescribing.

Presentation:
- Hard capsules containing 25 mg, 50 mg or 100 mg zonisamide.

Indication:
Adjunctive therapy in adult patients with partial seizures, with or without secondary generalisation.

Dosage and Administration:
- Adult: Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration. In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals. Withdraw gradually. Elderly and patients with renal or hepatic impairment: Caution (see SmPC). Not recommended in severe hepatic impairment. Children and adolescents under 18 years: Not recommended. Contra-Indications: Hypersensitivity to zonisamide, sulphonamide or any excipient.

Pregnancy:
- Must be added to existing therapy. Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration. In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals. Withdraw gradually. Elderly and patients with renal or hepatic impairment: Caution (see SmPC). Not recommended in severe hepatic impairment. Children and adolescents under 18 years: Not recommended. Contra-Indications: Hypersensitivity to zonisamide, sulphonamide or any excipient.

Pregnancy:
- Caution (see SmPC). Not recommended in severe hepatic impairment.

Lactation:
- Excreted into breast milk. A decision must be made to either discontinue Zonegran or breast-feeding.

Drug Interactions:
- Zonegran is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis. Zonisamide is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis.

Adverse Events:
- When you want to add to monotherapy efficacy:
 - Go straight from A to Zonegran

ABBREVIATED PRESCRIBING INFORMATION
Zonegran® (zonisamide)
Please refer to the SmPC before prescribing.

Presentation:
- Hard capsules containing 25 mg, 50 mg or 100 mg zonisamide.

Indication:
Adjunctive therapy in adult patients with partial seizures, with or without secondary generalisation.

Dosage and Administration:
- Adult: Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration. In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals. Withdraw gradually. Elderly and patients with renal or hepatic impairment: Caution (see SmPC). Not recommended in severe hepatic impairment. Children and adolescents under 18 years: Not recommended. Contra-Indications: Hypersensitivity to zonisamide, sulphonamide or any excipient.

Pregnancy:
- Must be added to existing therapy. Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration. In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals. Withdraw gradually. Elderly and patients with renal or hepatic impairment: Caution (see SmPC). Not recommended in severe hepatic impairment. Children and adolescents under 18 years: Not recommended. Contra-Indications: Hypersensitivity to zonisamide, sulphonamide or any excipient.

Pregnancy:
- Caution (see SmPC). Not recommended in severe hepatic impairment.

Lactation:
- Excreted into breast milk. A decision must be made to either discontinue Zonegran or breast-feeding.

Drug Interactions:
- Zonegran is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis. Zonisamide is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis.

Adverse Events:
- When you want to add to monotherapy efficacy:
 - Go straight from A to Zonegran

ABBREVIATED PRESCRIBING INFORMATION
Zonegran® (zonisamide)
Please refer to the SmPC before prescribing.

Presentation:
- Hard capsules containing 25 mg, 50 mg or 100 mg zonisamide.

Indication:
Adjunctive therapy in adult patients with partial seizures, with or without secondary generalisation.

Dosage and Administration:
- Adult: Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration. In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals. Withdraw gradually. Elderly and patients with renal or hepatic impairment: Caution (see SmPC). Not recommended in severe hepatic impairment. Children and adolescents under 18 years: Not recommended. Contra-Indications: Hypersensitivity to zonisamide, sulphonamide or any excipient.

Pregnancy:
- Must be added to existing therapy. Initial daily dose is 50 mg in two divided doses. After one week, increase to 100 mg daily. Then increase at one weekly intervals in 100 mg increments. Can be taken once or twice daily after titration. In renal or hepatic impairment and patients not receiving CYP3A4-inducing agents consider two weekly intervals. Withdraw gradually. Elderly and patients with renal or hepatic impairment: Caution (see SmPC). Not recommended in severe hepatic impairment. Children and adolescents under 18 years: Not recommended. Contra-Indications: Hypersensitivity to zonisamide, sulphonamide or any excipient.

Pregnancy:
- Caution (see SmPC). Not recommended in severe hepatic impairment.

Lactation:
- Excreted into breast milk. A decision must be made to either discontinue Zonegran or breast-feeding.

Drug Interactions:
- Zonegran is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis. Zonisamide is metabolised partly by CYP3A4, N-acetyl-transferases and conjugation with glucuronic acid; therefore caution with drugs which are P-gp substrates. Avoid concomitant administration with drugs causing urolithiasis.
I t is strange, when you think about it, that we see the visual world as complete – there are no gaps or missing pieces of information where the vessels and optic nerve fibres cross and disappear through the retina. The ability of the visual system to fill in this missing information is very successful, and in their article Ramona Weil and Gernot Rees explain how this may occur. In addition they provide a series of figures which allow you to experiment on yourself with this fill-in phenomena.

What does it mean to have mild cognitive impairment (MCI) in terms of the risk of developing dementia in the immediate and short term future? In the review article by Alex Mitchell we learn that “MCI is not a uniform prodromal condition but rather a collection of disorders united by a propensity towards modest memory (and to a lesser extent non-memory) cognitive difficulties.” As a result most studies now show that only the minority of patients with MCI go on to dementia. The challenge therefore is in better identifying this subgroup of individuals with the hope that we can delay or arrest the degenerative process that underlies their emerging cognitive dysfunction.

Alexander Jeans and Old Amnourje in their article offer a useful complimentary account to that of Jemeen Sreedharan and Chris Shaw (ACNR 9.2), covering the neuropathology of motor neurone disease. They highlight how the new genetic causes of some forms of familial MND have changed our perspectives on the pathology and the nature of the pathogenic pathways leading to the demise of these cells.

Geophagia is the main symptom (and sign?) discussed by Andrew Lamer in his ongoing series of articles entitled Neurological signs. The consequences of such a habit are not good, as Dr Livingstone commented when he was the first to observe and comment on this phenomenon. Indeed Andrew and his colleague Dr Ford also treat us to an interesting tour of neurology as seen on the big screen.

Boyd Ghosh has kindly taken on editing a new series of articles, discussing the challenges of research for those in training and how this can best be accommodated in the changing landscape of the NHS and the expectations placed on the next generation of Consultant Neurologists. In the first of the series, Boyd lays out how the series came about and how it will evolve, and includes an article by Geraint Fuller discussing “Doing Research in the post MMC world.” This series should help those planning to do, or those actually doing, research, explaining how this can best be achieved – and this includes achieving it within the new European Working Time Directive! This is the topic that Biba Stanton takes as the theme for discussion in the ABNT section. Talking of which, Paul Morrish has responded to an earlier article in this series and discusses his views on how neurology and neurologists can best plan for the future demands that will be increasingly placed in this field of medicine.

Continuing in a similar vein we are also seeking to have the occasional article written about leading neurologists of the last century who have now passed away. In the first of these, Alastair Compston gives a very personal account of the late Anita Harding. A neurologist who sadly died at the age of 42 and who had done so much to change our understanding of many neurological conditions. A feature written about leading neurologists of the last century, who have now passed away. In the first of these, Alastair Compston gives a very personal account of the late Anita Harding. A neurologist who sadly died at the age of 42 and who had done so much to change our understanding of many neurological conditions.

In our Personal Perspective, we are fortunate to have a most eloquent account of the neurologist who so sadly died at the age of 42 and who had done so much to change our understanding of many neurological conditions. In their article Rimona Weil and Alexander Jeans in their article offer a useful complimentary account to that of Jemeen Sreedharan and Chris Shaw (ACNR 9.2), covering the new genetic causes of some forms of familial MND. They highlight how the new genetic causes of some forms of familial MND have changed our perspectives on the pathology and the nature of the pathogenic pathways leading to the demise of these cells.

Geophagia is the main symptom (and sign?) discussed by Andrew Lamer in his ongoing series of articles entitled Neurological signs. The consequences of such a habit are not good, as Dr Livingstone commented when he was the first to observe and comment on this phenomenon. Indeed Andrew and his colleague Dr Ford also treat us to an interesting tour of neurology as seen on the big screen.

Boyd Ghosh has kindly taken on editing a new series of articles, discussing the challenges of research for those in training and how this can best be accommodated in the changing landscape of the NHS and the expectations placed on the next generation of Consultant Neurologists. In the first of the series, Boyd lays out how the series came about and how it will evolve, and includes an article by Geraint Fuller discussing “Doing Research in the post MMC world.” This series should help those planning to do, or those actually doing, research, explaining how this can best be achieved – and this includes achieving it within the new European Working Time Directive! This is the topic that Biba Stanton takes as the theme for discussion in the ABNT section. Talking of which, Paul Morrish has responded to an earlier article in this series and discusses his views on how neurology and neurologists can best plan for the future demands that will be increasingly placed in this field of medicine.

Continuing in a similar vein we are also seeking to have the occasional article written about leading neurologists of the last century who have now passed away. In the first of these, Alastair Compston gives a very personal account of the late Anita Harding. A neurologist who sadly died at the age of 42 and who had done so much to change our understanding of many neurological conditions. In their article Rimona Weil and Alexander Jeans in their article offer a useful complimentary account to that of Jemeen Sreedharan and Chris Shaw (ACNR 9.2), covering the new genetic causes of some forms of familial MND. They highlight how the new genetic causes of some forms of familial MND have changed our perspectives on the pathology and the nature of the pathogenic pathways leading to the demise of these cells.

Geophagia is the main symptom (and sign?) discussed by Andrew Lamer in his ongoing series of articles entitled Neurological signs. The consequences of such a habit are not good, as Dr Livingstone commented when he was the first to observe and comment on this phenomenon. Indeed Andrew and his colleague Dr Ford also treat us to an interesting tour of neurology as seen on the big screen.

Boyd Ghosh has kindly taken on editing a new series of articles, discussing the challenges of research for those in training and how this can best be accommodated in the changing landscape of the NHS and the expectations placed on the next generation of Consultant Neurologists. In the first of the series, Boyd lays out how the series came about and how it will evolve, and includes an article by Geraint Fuller discussing “Doing Research in the post MMC world.” This series should help those planning to do, or those actually doing, research, explaining how this can best be achieved – and this includes achieving it within the new European Working Time Directive! This is the topic that Biba Stanton takes as the theme for discussion in the ABNT section. Talking of which, Paul Morrish has responded to an earlier article in this series and discusses his views on how neurology and neurologists can best plan for the future demands that will be increasingly placed in this field of medicine.

Continuing in a similar vein we are also seeking to have the occasional article written about leading neurologists of the last century who have now passed away. In the first of these, Alastair Compston gives a very personal account of the late Anita Harding. A neurologist who sadly died at the age of 42 and who had done so much to change our understanding of many neurological conditions. In their article Rimona Weil and Alexander Jeans in their article offer a useful complimentary account to that of Jemeen Sreedharan and Chris Shaw (ACNR 9.2), covering the new genetic causes of some forms of familial MND. They highlight how the new genetic causes of some forms of familial MND have changed our perspectives on the pathology and the nature of the pathogenic pathways leading to the demise of these cells.

Geophagia is the main symptom (and sign?) discussed by Andrew Lamer in his ongoing series of articles entitled Neurological signs. The consequences of such a habit are not good, as Dr Livingstone commented when he was the first to observe and comment on this phenomenon. Indeed Andrew and his colleague Dr Ford also treat us to an interesting tour of neurology as seen on the big screen.

Boyd Ghosh has kindly taken on editing a new series of articles, discussing the challenges of research for those in training and how this can best be accommodated in the changing landscape of the NHS and the expectations placed on the next generation of Consultant Neurologists. In the first of the series, Boyd lays out how the series came about and how it will evolve, and includes an article by Geraint Fuller discussing “Doing Research in the post MMC world.” This series should help those planning to do, or those actually doing, research, explaining how this can best be achieved – and this includes achieving it within the new European Working Time Directive! This is the topic that Biba Stanton takes as the theme for discussion in the ABNT section. Talking of which, Paul Morrish has responded to an earlier article in this series and discusses his views on how neurology and neurologists can best plan for the future demands that will be increasingly placed in this field of medicine.

Continuing in a similar vein we are also seeking to have the occasional article written about leading neurologists of the last century who have now passed away. In the first of these, Alastair Compston gives a very personal account of the late Anita Harding. A neurologist who sadly died at the age of 42 and who had done so much to change our understanding of many neurological conditions. In their article Rimona Weil and Alexander Jeans in their article offer a useful complimentary account to that of Jemeen Sreedharan and Chris Shaw (ACNR 9.2), covering the new genetic causes of some forms of familial MND. They highlight how the new genetic causes of some forms of familial MND have changed our perspectives on the pathology and the nature of the pathogenic pathways leading to the demise of these cells.

Geophagia is the main symptom (and sign?) discussed by Andrew Lamer in his ongoing series of articles entitled Neurological signs. The consequences of such a habit are not good, as Dr Livingstone commented when he was the first to observe and comment on this phenomenon. Indeed Andrew and his colleague Dr Ford also treat us to an interesting tour of neurology as seen on the big screen.

Boyd Ghosh has kindly taken on editing a new series of articles, discussing the challenges of research for those in training and how this can best be accommodated in the changing landscape of the NHS and the expectations placed on the next generation of Consultant Neurologists. In the first of the series, Boyd lays out how the series came about and how it will evolve, and includes an article by Geraint Fuller discussing “Doing Research in the post MMC world.” This series should help those planning to do, or those actually doing, research, explaining how this can best be achieved – and this includes achieving it within the new European Working Time Directive! This is the topic that Biba Stanton takes as the theme for discussion in the ABNT section. Talking of which, Paul Morrish has responded to an earlier article in this series and discusses his views on how neurology and neurologists can best plan for the future demands that will be increasingly placed in this field of medicine.

Continuing in a similar vein we are also seeking to have the occasional article written about leading neurologists of the last century who have now passed away. In the first of these, Alastair Compston gives a very personal account of the late Anita Harding. A neurologist who sadly died at the age of 42 and who had done so much to change our understanding of many neurological conditions. In their article Rimona Weil and Alexander Jeans in their article offer a useful complimentary account to that of Jemeen Sreedharan and Chris Shaw (ACNR 9.2), covering the new genetic causes of some forms of familial MND. They highlight how the new genetic causes of some forms of familial MND have changed our perspectives on the pathology and the nature of the pathogenic pathways leading to the demise of these cells.

Geophagia is the main symptom (and sign?) discussed by Andrew Lamer in his ongoing series of articles entitled Neurological signs. The consequences of such a habit are not good, as Dr Livingstone commented when he was the first to observe and comment on this phenomenon. Indeed Andrew and his colleague Dr Ford also treat us to an interesting tour of neurology as seen on the big screen.
Life with epilepsy can be much more than just a gap between seizures.

It’s hard to live life to the full if part of you is always expecting the next seizure. NEW VIMPAT® is an anti-epileptic drug with an innovative mode of action.1, 2 In clinical trials, VIMPAT® has shown improved seizure control when added to first and second generation AEDs. 3

Prescribe VIMPAT® when you want your patients to look forward with the confidence of additional seizure control.1, 3

1. VIMPAT® Summary of Product Characteristics (SPC) before prescribing VIMPAT® 50 mg, 100 mg, 150 mg and 200 mg film-coated tablets VIMPAT® 15 mg/ml syrups VIMPAT 10 mg/ml solution for infusion Active Ingredient: Tablets: Lacosamide 50 mg, 100 mg, 150 mg and 200 mg film-coated tablets Syrup: Lacosamide 15 mg/ml Solution for infusion Lacosamide 10 mg/ml. Therapeutic Indications: Vimpat is indicated as an adjunctive therapy in the treatment of partial-onset seizures with or without secondary generalisation in patients with epilepsy aged 16 years and older. Dosage and Administration: Adults and adolescents: Recommended starting dose is 50 mg twice a day which should be increased to an initial therapeutic dose of 100 mg twice a day after 1 week. Maximum daily dose of 400 mg (in two 200 mg doses). For solution for infusion: Infused over a period of 15 to 60 minutes twice daily. Can be administered iv without further dilution. Elderly: No dose reduction necessary. Age associated decreased renal clearance with an increase in AUC levels should be considered. Paediatric patients: Not recommended. Patients with renal impairment: No dose adjustment necessary in mild and moderate renal impairment. Dose adjustment is recommended in SPC for patients with severe renal impairment and patients with end-stage renal disease. Dose titration should be performed with caution. Patients with hepatic impairment: No dose adjustment needed in mild to moderate impairment. In accordance with current clinical practice, if Vimpat has to be discontinued, it is recommended this be done gradually (e.g. taper the daily dose by 200 mg/week). Contraindications: Warnings etc. Contraindications: Hypersensitivity to lacosamide or to any of the excipients. Known second- or third-degree atrioventricular block. In addition for tablets, hypersensitivity to peanuts or soy. Prescriptions: Lacosamide has been associated with dizziness. Use with caution in patients with known conduction problems, severe cardiac disease or in elderly. Excipients in the syrup may cause allergic reactions (possibly delayed), should not be taken by those with fructose intolerance and may be harmful to patients with phenylketonuria. Monitor patients for signs of suicidal ideation and behaviours. Advise patients and carers to seek medical advice should such signs emerge. Interactions: Prolongations in PR interval with lacosamide have been observed in clinical studies. Use with caution in patients treated with products associated with PR prolongation and those treated with class I antiarrhythmic drugs. Strong enzyme inducers such as rifampicin or St John’s Wort may moderately reduce concentrations of carbamazepine and valproic acid. Lacosamide plasma concentrations were not affected by carbamazepine and valproic acid. No clinically relevant interaction with ethynylestradiol and levonorgestrel. No effect on pharmacokinetics of digoxin, Pregnancy and Lactation: Should not be used during pregnancy. For precautionary measures, breast feeding should be discontinued during treatment with lacosamide. Driving etc.: Patients are advised not to drive a car or operate other potentially hazardous machinery until they are familiar with the effects of Vimpat on their ability to perform such activities. Adverse Effects: Very common (<10%): Dizziness, headache, diplopia, nausea. Common (between 1%–10%): Depression, balance disorder, abnormal coordination, memory impairment, cognitive disorder, somnolence, tremor, nystagmus, blurred vision, vertigo, vomiting, constipation, flatulence, pruritus, gait disturbance, asthenia, fatigue, fall, skin laceration. Adverse reactions associated with PR prolongation may occur. Consult SPC in relation to other side effects. Pharmacological Precautions: Tablets: None. Syrup: Do not store above 30°C. Use within 4 weeks of first opening. Solution for infusion: Do not store above 25°C. Use immediately. Legal Category: POM. Product Licence Numbers: 50 mg x 14 tabs: EU/1/08/470/003; 100 mg x 14 tabs: EU/1/08/470/004; 100 mg x 56 tabs: EU/1/08/470/005; 150 mg x 14 tabs: EU/1/08/470/007; 150 mg x 56 tabs: EU/1/08/470/008; 200 mg x 56 tabs: EU/1/08/470/011; Syrup (15 mg/ml) x 200 ml: EU/1/08/470/014; Solution for infusion (10 mg/ml) x 20 ml: EU/1/08/470/016. NHS Cost: 50 mg x 14 tabs: £9.01; 100 mg x 14 tabs: £18.02; 100 mg x 56 tabs: £72.08; 150 mg x 14 tabs: £27.03; 150 mg x 56 tabs: £108.12; 200 mg x 56 tabs: £144.16; Syrup (15 mg/ml) x 200 ml: £38.61; Solution for infusion (10 mg/ml) x 20 ml: £29.70. Name and Address of PL Holder: UCB Pharma SA, Allée de la Ratchere 60, B-1070 Brussels, Belgium. Further information is available from: UCB Pharma Ltd, 508 Bath Road, Slough, Berkshire, SL1 3WE. Tel: 0753 334655. Fax: 0753 336632. Email: medicalinformationuk@ucb.com. Date of Revision: March 2009 (OFPVE0122) Vimpat is a registered trade name. References: 1. VIMPAT® Summary of Product Characteristics 2. Beyreuther BK et al. CNS Drugs Rev 2007; 13(1): 21–42. 3. UCB Data on file. Date of preparation: April 2009. OFPVE0142

For further information please visit www.vimpat.co.uk
There is much misinformation about the natural history of people with subjective memory complaints (SMC) who do or do not have objective evidence of cognitive decline. The combination of the two, where insufficient to meet criteria for dementia, is essentially mild cognitive impairment or MCI (Table 1). From these criteria it is evident that MCI is not a diagnosis based on specific cognitive tests, neuroimaging or neuropathology but is a descriptive syndrome of convenience likely to represent many possible underlying causes. Yet MCI is still important and common, more common than dementia itself. For example in a primary care sample of 3,327 individuals aged 75+ the prevalence of MCI was 15.4% to 25.2% depending on definition used. The main role of MCI has been its ability to predict later dementia as it has been assumed (perhaps wrongly) that most with MCI are not functionally impaired. Many authors have suggested that MCI is an inescapable intermediate stage between normal ageing and dementia. This is because numerous short term studies have generated a view that the annual conversion rate (ACR) averages 10 to 15% and logically if this rate held true in a linear fashion then within 10 years of diagnosis all surviving MCI sufferers would have developed dementia (cumulative conversion rate CCR = 100%). However, most very large studies dispute this. In The Three Cities community study, which followed 2882 individuals with MCI for four years only, 6.6% progressed to dementia. In a 10 year community study Ganguli and colleagues found a low ACR of only 2.75%. Even in the multicentre memory clinic-based Descripa study the CCR was only 29.7% after three years. What might explain this discrepancy in risk? It is most likely due to sampling effects. Thus where individuals with definite memory complaints (and other risk factors) seek help from specialist centres there is indeed a typical 10% ACR, according to a recent meta-analysis (95% CI 6.3% to 13.4%). However, if data are limited to the longest studies lasting at least 5 years (including six long term clinical studies in hospital settings and nine community studies), the mean ACR to dementia is 4.2% (95% CI 3.9% to 4.6%) and the CCR 31.4%. Risk is appreciably lower outside of hospital settings and for those not spontaneously reporting SMC. Remarkably, the ACR also diminishes according to the length of follow-up suggesting a bias in shorter studies from recruitment of individuals at highest risk.

For the clinician the take home message is that MCI has low sensitivity but high specificity which means a modest positive predictive value for predicting dementia especially when the prevalence is low but conversely high negative predictive value. For example, in the large and clinically representative Cache County study, sensitivity (Se) was 34% and specificity (Sp) 98% for prediction of later decline (Table 2). In the previously mentioned meta-analysis of 41 studies, the predictive power of MCI averaged 32.3% for those with Mayo clinic defined MCI (that is MCI with SMC) and 24.1% for those with non-Mayo criteria. To increase accuracy additional risk factors must be measured. For example in several countries CSF is routinely sampled and CSF phosphorylated tau appears to be a promising biomarker. In a new meta-analysis soon to be reported, p-tau was able to separate MCI from healthy individuals with a Se of 73.6% and Sp of 83.9% (PPV 85.9%, NPV 76.9%). Even of more interest, p-tau was reasonably successful in predicting progression to dementia in MCI (separating progressive from stable MCI) with a Se of 81.1%, a Sp 65.3%, a PPV 63.0% and a NPV of 83.0% and thus showing

Table 1: Consensus Criteria for MCI from Portet et al 2006

| A. Moderate cognitive deficits, short of dementia |
| B. Self-reported and/or informant reported cognitive complaints |
| C. Impairment on objective / clinical cognitive tests |
| D. Preserved basic activities of daily living and minimal impairment in complex instrumental functions |

Table 2. Predictive Accuracy of MCI from Cache County

<table>
<thead>
<tr>
<th>Cache County Results</th>
<th>Dementia</th>
<th>Non-Dementia</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCI</td>
<td>55</td>
<td>65</td>
<td>PPV 45.8%</td>
</tr>
<tr>
<td>Healthy Elderly</td>
<td>104</td>
<td>3042</td>
<td>NPV 96.7%</td>
</tr>
<tr>
<td></td>
<td>Se 34%</td>
<td>Sp 97.9%</td>
<td></td>
</tr>
</tbody>
</table>
What matters to your Parkinson’s disease patients?

Sticking to a daily routine? Having a good night’s sleep?

Waking up feeling well? Whatever is important to them, Neupro® will be there. Its smooth, continuous drug delivery will give them back control through the day, night and into the morning.1–4

Neupro® is a thin, matrix-type square transdermal patch. Neupro® will be there. Its smooth, continuous drug delivery will give them back control through the day, night and into the morning.1–4

Neupro® is applied to the skin once a day. The patch remains on the skin for 24 hours and will then be replaced by a new one at a different application site. Microtherapy treatment is initiated with a single daily dose of 2 mg/24 h. Dose increased by 2 mg/24 h each week (e.g. 2 mg/24 h in Week 1, 4 mg/24 h in Week 2, 6 mg/24 h in Week 3 and 8 mg/24 h in Week 4) until an effective dose is reached. Maximal dose is 8 mg/24 h. Adjunctive therapy (with levodopa) treatment initiation is at 4 mg/24 h and increased weekly in 2 mg/24 h increments up to a maximal dose of 16 mg/24 h. Haloperidol and levodopa. Adjustment of the dose is not necessary in patients with mild to moderate hepatic impairment or in patients with mild to severe renal impairment including those requiring dialysis. Caution is advised and dose adjustment may be needed when treating patients with severe hepatic impairment. Older and debilitated patients not recommended. Treatment discontinuation if treatment is to be withdrawn should be gradually reduced, in steps of 2 mg/24 h with a dose reduction every other day to avoid the possibility of developing neuroleptic malignant syndrome. Contraindications: Hypersensitivity to rotigotine or to any of the excipients. Neupro® should be removed prior to Magnetic Resonance Imaging (MRI) or cardioversion to avoid burns. Warnings and Precautions: External heat should not be applied to the patch. Compulsive behaviours are known to cause hypotension, and monitoring of blood pressure is recommended. Where severe or sudden deep sleep occurs, or when there is persistent, spreading or serious skin rash at the application site, consider dose reduction or termination of therapy. Rotigotine is associated with skin reactions. In case of generalised skin reaction associated with use of Neupro®, discontinuation treatment. Avoid exposure to direct sunlight until the skin is healed. Compulsive behaviours and hallucinations have been reported in patients treated with Neupro®. In patients with severe hepatic impairment, discontinue treatment. Avoid exposure to direct sunlight until the skin is healed. Compulsive behaviours and hallucinations have been reported in patients treated with Neupro®.

References:

Date of literature preparation: January 2009.
neither improved nor deteriorated. Later ferers had recovered and an additional 60% demonstrated that over 3 years 20% of MCI suf-deteriorate. Wolf and colleagues (1998) potentially treatable causes of cognitive or a related condition. Non-degenerative, inflammatory Prevention Trial of 2528 individ-
lar settings.

The predictive abilities of MCI alone vs P-tau status; MCI Status vs P-tau Status. Unfortunately no single risk factor appears sufficient for wholly accurate predic-
tion and a complex panel (such as age + neuropsychological status + function + ApoE + MRI + CSF p-tau + vascular risk) may be required akin to the predictors in cardiovascu-
reasonable value as a screening (or “rule-out”) test. The predictive abilities of MCI alone vs P- tau alone for predicting dementia are plotted in Figure 1. Unfortunately no single risk factor appears sufficient for wholly accurate predic-
tion and a complex panel (such as age + neuropsychological status + function + ApoE + MRI + CSF p-tau + vascular risk) may be required akin to the predictors in cardiovascu-
reasonable value as a screening (or “rule-out”) test. The predictive abilities of MCI alone vs P- tau alone for predicting dementia are plotted in Figure 1. Unfortunately no single risk factor appears sufficient for wholly accurate predic-
tion and a complex panel (such as age + neuropsychological status + function + ApoE + MRI + CSF p-tau + vascular risk) may be required akin to the predictors in cardiovascu-
reasonable value as a screening (or “rule-out”) test. The predictive abilities of MCI alone vs P- tau alone for predicting dementia are plotted in Figure 1. Unfortunately no single risk factor appears sufficient for wholly accurate predic-
tion and a complex panel (such as age + neuropsychological status + function + ApoE + MRI + CSF p-tau + vascular risk) may be required akin to the predictors in cardiovascu-
reasonable value as a screening (or “rule-out”) test. The predictive abilities of MCI alone vs P- tau alone for predicting dementia are plotted in Figure 1. Unfortunately no single risk factor appears sufficient for wholly accurate predic-
tion and a complex panel (such as age + neuropsychological status + function + ApoE + MRI + CSF p-tau + vascular risk) may be required akin to the predictors in cardiovascu-
reasonable value as a screening (or “rule-out”) test. The predictive abilities of MCI alone vs P- tau alone for predicting dementia are plotted in Figure 1. Unfortunately no single risk factor appears sufficient for wholly accurate predic-
Finally, let’s address the question of whether treatment alters the progression of the condition. Most research has been con-
ducted on the acetylcholinesterase inhibitors but new data is emerging on non-pharmacological strategies. The first meta-
analysis of three published and five unpub-
lished trials (three on donepezil, two on rivastigmine, and three on galantamine) did not find significant differences compared with placebo groups although analysis was incomple-
te. Our own re-analysis of the four largest studies involving 1701 individuals (one donepezil, one rivastigmine, and two galantamine) does indeed show a reduced risk of progression in the short term (RR 0.81; 95% CI 0.71-0.93) for those taking an acetyl-
cholinesterase inhibitor which is statistically significant (Figure 2) but really requires fur-
ther confirmation from much longer trials which are of course expensive to complete.

In conclusion, only recently has sufficient data accrued to say with confidence that MCI is not a uniform prodromal condition but rather a collection of disorders united by a propensity towards modest memory (and to a lesser extent non-memory) cognitive dif-
ficulties. Surprisingly, most individuals with MCI do not develop dementia within the first 10 years although a caveat is that no studies have yet to exceed that period. A substantial minority remain stable for some years and a significant proportion actually improve which means we may need to moderate what we tell individuals and families with MCI and related conditions.

REFERENCES

1. Portet F, Gusset PJ, Visser PJ, Fissore GB, Nobili F, Scheltens P, Vellas B, Touchon J. Mild cognitive impair-
2. Luck T, Redel-Heller SG, Hanna Kaduszkiewicz et al. Mild Cognitive Impairment in General Practice: Age-Specific Prevalence and Correlate Results from the German Study on Aging, Cognition and Dementia in Primary Care Patients (AgeCoDe). Dement Geriatr Cogn Disord 2007;24:307-16.
4. Bruscoli M, Lovestone S. Is MCI really just early demen-
6. Ganguli M, Dodge HH, Shen V, DeKosky ST. Mild cogni-
9. A. J Mitchell, M Shen-Ikishi. Temporal trends in the long-
12. Breitner JCS for the ADAPT Research Group. Onset of Alzheimer’s dementia occurs commonly without prior cog-
nitive impairment. Results from ADAPT Chicago 02-01-02 02.
13. Jicha GA, Ahnert E, Schmitt FA et al. Clinical features of mild cognitive impairment differ in the research and ter-
How will restless legs syndrome affect your patients today?

The symptoms of RLS can flare up at any moment, day or night. Neupro® can help no matter when your patients suffer most. Its 24-hour continuous delivery system helps RLS patients to rest, live and sleep.1,2

Neupro®
rodigotine transdermal patch

Rest, live, sleep

ABBREVIATED PRESCRIBING INFORMATION

(please consult the summary of product characteristics (SmPC) before prescribing)

Neupro® 1 mg/24 h transdermal patch, **Neupro® 2 mg/24 h transdermal patch,** **Neupro® 3 mg/24 h transdermal patch**

Presentation: Neupro® is a thin, matrix-type square transdermal patch. **Active Ingredient:** Rotigotine. 1 mg/24 h transdermal patch is 5 cm² and contains 2.25 mg rotigotine, releasing 1 mg rotigotine over 24 hours. 2 mg/24 h transdermal patch is 10 cm² and contains 4.5 mg rotigotine, releasing 2 mg rotigotine over 24 hours. 3 mg/24 h transdermal patch is 15 cm² and contains 6.75 mg rotigotine, releasing 3 mg rotigotine over 24 hours.

Therapeutic Indications: Neupro® is indicated for the symptomatic treatment of moderate to severe idiopathic Restless Legs Syndrome in adults.

Dosage and Administration: Neupro® is applied to the skin once a day. The patch remains on the skin for 24 hours and is then replaced by a new one at a different application site. A single daily dose should be initiated at 1 mg/24 h. Depending on the individual patient response, the dose may be increased in weekly increments of 1 mg/24 h to a maximal dose of 3 mg/24 h. A dose reduction preferably every other day, to avoid the possibility of developing neuroleptic malignant syndrome.

Contraindications: Hypersensitivity to rotigotine or to any of the excipients. **Neupro® should be removed prior to Magnetic Resonance Imaging (MRI) or cardioversion to avoid burns.**

Adverse events should also be reported to UCB Pharma Ltd.

References: 1. Braun M et al. 2005; Poster presented at 9th Congress of the European Federation of Neurological Societies; September 17–20, Athens, Greece.

Date of literature preparation: June 2009
How Does the Brain Fill-in the Visual World?

Our awareness of the visual environment comes to us from the pattern of light on the retina. But this pattern is an incomplete record of the visual scene, because many pieces of the scene fall on the blind spot or are obscured by retinal vessels. This loss of information can be worsened by disease induced retinal damage, or when cortical injury following stroke damages areas of visual cortex corresponding to parts of the visual field. Yet healthy people and most patients are largely unaware of this missing or incomplete information. Indeed, we see the visual scene as though it were complete because the brain ‘fills-in’ the missing information. The neural mechanisms involved in such perceptual filling-in can tell us a great deal about normal visual processes, and are also likely to be involved when parts of the visual system are damaged and more extensive filling-in takes place.

Filling-in at the blind spot

Although the blind spot is devoid of photoreceptors and carries no visual information from the corresponding region in visual space, when we view the world through one eye, we don’t see a blank patch: the visual system fills-in the missing information from the surrounding colour or pattern (Figure 1). Behavioural studies in healthy people suggest that filling-in at the blind spot is a rapid, preattentive process that occurs early in the visual system. For example, if several rings are viewed, but with one positioned in the visual field so its retinal projection lies just around the blind spot, then this particular ring will ‘pop out’ of the group as it is perceived not as a ring, but as a filled-in disc among the other rings that do not lie over the blind spot. Even an extremely narrow border (0.05 deg) surrounding the blind spot, will generate the appearance of uniform colour filling-in the blind spot, consistent with the theory that such filling-in depends on local processes generated at the edge of the blind spot representation in primary visual cortex. Single cell recordings from anaesthetised monkeys show that when filling-in takes place at the blind spot, neural responses are generated at the retinotopic representation of the blind spot in primary visual cortex.

However, the precise mechanism by which perceptual filling-in across the blind spot occurs is still unknown. The two main theories are that it involves lateral propagation of signals from the edge of the blind spot, or is due to remapping of receptive fields of surrounding neurons into the blind spot region.

Filling-in after prolonged fixation

Filling-in also takes place in normal vision during prolonged fixation. For example, a figure viewed in the periphery on a bland and featureless background will seem to disappear after a few seconds of prolonged fixation, to be replaced by the background (see Figure 2a). This type of filling-in is known as Troxler fading. A similar but more striking effect is seen if the featureless background is replaced by a dynamic texture, similar to the static on a television set. This dynamic background promotes rapid filling-in of even quite salient figures placed on top of the background, and the resultant effect is described as an ‘artificial scotoma’ because the figure becomes invisible and ‘filled in’ by the textured background (see Figure 2b). These ‘artificial scotomas’ may be associated with similar neural processes that lead to the filling-in which takes place when targets are stabilised on the retina, as eye movements disrupt the artificial scotoma.

Behavioural studies suggest that the filling-in associated with an artificial scotoma takes place in early retinotopic cortex as it is influenced by low-level sensory factors such as eccentricity and boundary length of the figure that ‘fills-in’. This is consistent with single cell studies in monkeys and neuroimaging reports in humans.

However, recent work suggests that higher cognitive factors may also play a role, as directing spatial attention to the peripheral figure makes it
ABBREVIATED PRESCRIBING INFORMATION

(please consult the Summary of Product Characteristics (SPC) before prescribing.)

KEPPRA® film-coated tablets 250 mg, 500 mg, 750 mg, 1000 mg
KEPPRA® 750 mg/ml oral solution
KEPPRA® 100 mg/ml concentrate for solution for infusion

Active Ingredient: levetiracetam 250 mg, 500, 750 and 1000 mg. Oral solution: levetiracetam 100 mg per ml. Injection: levetiracetam 100 mg per ml.

Uses: Monotherapy for partial onset seizures with or without secondary generalisation in patients from 16 years of age with newly diagnosed epilepsy. Adjunctive therapy for partial onset seizures with or without secondary generalisation in adults and children from 4 years of age, for myoclonic seizures in adults and adolescents from 12 years of age with juvenile Myoclonic Epilepsy and for primary generalised tonic-clonic seizures in adults and adolescents from 12 years of age with Idiopathic Generalised Epilepsy. Injection: an alternative for patients when oral administration is temporarily not feasible. Dosage and Administration: Oral solution should be diluted prior to use. Infusion: Keppra concentrate must be diluted in at least 100 ml of a compatible diluent and administered intravenously as a 15-minute infusion. Monotherapy (adults and adolescents from 16 years): Recommended starting dose of 250 mg twice daily which should be increased to an initial therapeutic dose of 500 mg twice daily after two weeks. The dose can be further increased by 250 mg twice daily every two weeks depending upon the clinical response. The maximum dose is 1500 mg twice daily. Adjunctive therapy: Adults and adolescents older than 12 years or weighing 50 kg or more: 500 mg twice daily can be increased up to 1500 mg twice daily. Dose changes can be made in 500 mg twice daily increases or decreases every two to four weeks. Elderly: Adjustment of the dose is recommended in patients with compromised renal function. Children aged 4 to 11 years and adolescents (12 to 17 years) of less than 50 kg: 10 mg/kg twice daily, increased up to 30 mg/kg twice daily. Do not exceed increases or decreases of 10 mg/kg twice daily every two weeks. The lowest effective dose should be used. (For full dosage recommendations see SPC.) Patients with renal impairment: Adjust dose according to creatinine clearance as advised in SPC. Patients with hepatic impairment: No dose adjustment with mild to moderate hepatic impairment. With severe hepatic impairment (creatinine clearance <70 ml/min) a 50% reduction of the daily maintenance dose is recommended, as the creatinine clearance may underestimate the renal insufficiency. Contraindications: Warnings etc.: Contraindications: Hypersensitivity to levetiracetam, other pyrrolidone derivatives or excipients. Precautions: If discontinuation of treatment reduce dose gradually as advised in SPC. Due to its excipients, the oral solution may cause allergic reactions (possibly delayed). Infusion: Keppra concentrate contains 7.196 mg of sodium per vial. To be taken into consideration by patients on a controlled sodium diet. Monitor patients for signs of suicidal ideation and behaviours. Advise patients and carers to seek medical advice should such signs emerge. Interactions: Keppra did not affect serum concentrations of phenytoin, carbamazepine, valproic acid, phenobarbital, lamotrigine, gabapentin or primidone. Drugs excreted by active tubular secretion could reduce the renal clearance of the metabolite. Levetiracetam 1000 mg daily did not affect the pharmacokinetics of oral contraceptives (ethinyl estradiol and levonorgestrel). Levetiracetam 2000 mg daily did not affect the pharmacokinetics of digoxin and warfarin and prothrombin times were not modified. Pregnancy and lactation: Should not be used during pregnancy unless clearly necessary. Breast-feeding not recommended. Driving, etc: Caution recommended when performing skilled tasks, e.g. driving vehicles or operating machinery. Adverse Effects: Incidence of undesirable effects considered to be at least possibly related in controlled clinical studies:

- Very common
- Common
- Uncommon
- Rare
- Not evaluable
- Rises very rarely

Common side effects: Asthenia/fatigue, somnolence. Rare side effects: Nausea, vomiting, headache, dizziness, pyrexia, hyperthermia, fever, heartburn, dyspepsia, abdominal pain, abdominal discomfort, diarrhoea, anosmia, weight gain, weight loss, increase in creatinine, pyrexia, sleep disturbances, agitation, anxiety, nervousness, depression, insomnia, nervousness, irritability, agitation, personality disorders, thinking abnormal, vertigo, rash, rash, pruritus, diplopia, vision blurred, myalgia, injection site reaction, nasopharyngitis, cough increased, thrombocytopenia. Consult SPC in relation to other side effects. Pharmaceutical Precautions: Tablets: None. Oral solution: Store in original container. After first injection use within 2 months. Infusion: Use immediately after dilution. Legal Category: POM. Marketing Authorisation Numbers: 250 mg x 60 tabs: EU/1001/640/04. 500 mg x 60 tabs: EU/1001/640/05. 750 mg x 60 tabs: EU/1001/640/06. 1000 mg x 60 tabs: EU/1001/640/07. Solution: x 300 ml: EU/11/14/62. Solution (500 mg/5 ml) x 10 vials: EU/1001/446/03. NHS Cost: 250 mg x 60 tabs: £25.70. 500 mg x 60 tabs: £52.30. 750 mg x 60 tabs: £89.10. 1000 mg x 60 tabs: £101.10. Solution (500 mg/ml) x 10 vials: £135.00. Name and Address of PL Holder: UCB Pharma S.A., Allée de la Recherche 60, B-1070 Bruxelles, Belgium. Further information is available from: UCB Pharma Ltd,gregation Square, Oldham, OL1 4NF. Tel: 0161 648 6555. Fax: 0161 648 6552. Email: medicalinformation@ucb.com Date of Revision: January 2009

Adverse events should be reported. Reporting forms and information can be found at www.yellowcard.gov.uk

Adverse events should also be reported to UCB Pharma Ltd.
in an array of circles and squares. If the notched circle abuts the edge of one of the squares so that it seems to be occluded by it, the notched circle takes longer to find (see Figure 3a) as it is perceived as a complete circle in a sea of complete circles. Occluded objects are also easier to recognize than those with the equivalent portions deleted (see Figure 3b) suggesting that inferred depth is used to inform the visual system of object boundaries, as objects are far more likely to be partly occluded than have bits missing. This would suggest some involvement of object related areas in identifying occluded items. Indeed, a recent neuroimaging study showed increased activity during presentation of occluded objects in the lateral occipital complex (LOC), a region known to be involved in object processing and in the posterior intraparietal region. The specificity of filling-in belief that the depth is likely to involve a large number of information processing steps such as distinguishing between the boundaries of the occluded and the occluding object, assigning each of the resulting partial views a surface and then filling-in the missing information of each part using clues from depth disparity and colinear edges.

Understanding the processes involved in filling-in in the healthy brain can provide insights into filling-in following visual loss

Filling-in as a response to disorders of vision

Patients with retinal scotomas due to macular degeneration and toxo-plasmosis also experience perceptual filling-in. This can be problematic, especially in age-related macular degeneration, as early detection of the macular disease is essential to preserve foveal function with newer treatments and when patients fill-in across their scotomas they are unaware of their visual field deficits.

The mechanisms of filling-in across retinal scotomas are still debated. In monkeys, cells within primary visual cortex representing the lesion expand their receptive fields within minutes after inducing a retinal lesion and several months after the lesion, the receptive fields have expanded and shifted to outside the lesion. Similar reports of receptive field reorganisation in V1 (primary visual cortex) have been shown in retinal lesions in cats and following cortical lesions in kittens. In humans, reports are less consistent. Visual cortex (including V1) deprived of retinal input due to macular degeneration shows increased activation with functional MRI to stimuli outside the corresponding region in visual space. Reorganisation also occurs following loss of visual input due to optic radiation damage following stroke. However, other studies have failed to find consistent evidence for cortical reorganisation in macular degeneration and a recent study suggests that large scale cortical reorganisation may only occur with complete absence of functional foveal vision. The processes underlying this cortical reorganisation remain unknown. One possibility is that it arises from disinhibition of pre-existing long-range horizontal connections in V1, but this would require connections longer than those known to occur in primate V1. Alternatively, new horizontal connections might be formed. A third possibility is that reorganisation occurs due to new or unmasked feedback projections from higher visual areas with larger receptive fields (see also reference 35 for an example).

Conclusion

Perceptual filling-in in many different forms, plays a critical role in completing missing information in normal human vision and is also a consequence of visual loss. The mechanisms are likely to differ between the various types of filling-in but may be important in designing treatments to encourage cortical reorganisation following damage to visual structures.

REFERENCES

Congenital Insensitivity to Pain

I am a 32-year-old woman, and both my sister and I were born with a rare condition, congenital insensitivity to pain (CIP). Although we have normal nervous systems, our nerve endings are unable to respond to pain due to a mutant gene, SCN9A. As a result I’ve lived a life without normal physical pain. The condition also means I lack a sense of smell and have a lack of overflow tears. It’s difficult writing a short article about the condition and my experiences, as so much has happened to my sister and I. CIP has affected most parts of our lives, both physically and psychologically, and I could write a good doorstep of a book! However, the concern is to hold back in life. We are both university graduates with good full-time jobs. We have loving partners, lots of friends and enjoy active social lives.

I rarely divulge the fact that I don’t feel pain when meeting new people, but when do I usually get a response such as, ‘That’s amazing, I wish I had it’. Well, I would never want to be without pain. As I am writing this, my seven-month-old baby daughter is sleeping upstairs and I am sat on a large cushion recovering from a severely fractured pelvis with nerve damage. Yet another thing to add to my long list of physical damage I’ve suffered over the years. I also receive other comments such as, ‘You are like a superhero’ and probably the one I can place money on, ‘So you wouldn’t feel if I punched you?’ Well, I would actually I can feel pressure, aches, sensations and temperature (although I have a higher tolerance). I may have my own sort of ‘pain’. I just don’t feel pain the same way that other people do. It’s always hard to explain, as it’s how I’ve been born.

My parents realised that my sister and I had this condition when we were little. We would fall over and not cry and were very accident prone. My mother had a terrible time in the 70s and 80s convincing doctors of our condition, as it was so rare and very little was known about it. One of many examples is the time I broke my hand when I was around eight years old. My mother noticed my hand was red, hot and swollen, but A&E dismissed this as a bee sting and she had to fight for an X-raying that confirmed the break. I feel so sad when I think of the tough times my parents went through. Pain is there for a reason to protect yourself. As a parent you want to protect your child and keep them safe, but this became impossible. Some people even assumed my mother was lying and accused her of child abuse. We were never wrapped in cotton wool though, we had to learn to look after ourselves.

We simply learned that hurting ourselves equalled blood, scan, cuts, breaks and burns rather than pain. My mother became extra vigilant and began daily checks of our bodies. She never had the radiators too hot and kept us away from the icebox. She ordered Medic Alert necklaces that we could carry around in case of an emergency.

We were naturally more clumsy, heavy-handed and heavy-footed than other children, and still are! When you learn to walk, run and jump as a child you do so to soften the blow to your limbs and joints, but without pain this is impossible.

Our family photo album is full of pictures of us covered in bandages and plaster. To name just a few terrible incidents: chewing the mouth and tongue until they are deformed, ironing hands, falling asleep on a hot water bottle, running on a broken leg until it crumpled beneath and not feeling an eye ulcer, resulting in being almost blind in one eye.

We kept the condition to ourselves and only told close family and friends. We never tried to exploit it in the media like other families would, or gain any financial benefit. The danger of telling other school children would be that they would punch you and then say, ‘Did that hurt?’ There was also a danger of feeling invincible and showing off. We are aware of a child with the same condition who jumped from a building and over again to impress friends.

By our teens we became responsible for our physical health and were aware of the dangers we faced in life. We rarely thought about it through our teens and twenties. There were odd trips to hospital for X-rays and checks and safety measures became part of my daily routine. Examples include: putting on the cold tap before the hot, checking my nails aren’t sharp before I go to sleep, placing magazines on my lap before placing down a hot dinner tray and using blunt knives in the kitchen.

My sister and I didn’t know the reason why we didn’t feel pain. I started to think about this more carefully in my late twenties and now that the internet was at hand, decided to carry out my own investigation. I sent off emails around the country to different doctors. That led to finding out more information from the lovely Dr Bowsher at the Liverpool Pain Institute and finally being properly diagnosed by the wonderful Dr Woods at Addenbrookes. The internet was also brilliant for getting in touch with people all over the world who have the same condition or a variance of it. I found that I shared similar experiences both physically and psychologically with others.

I was hoping I wouldn’t experience any further problems as an adult but I’ve been through hell over the last seven months. Our friend in Norway who has the same condition and has two children said that having children was payback for the trouble you had when you were young. You can have a wonderful experience giving birth pain free! I was quite anxious about having a baby as I thought if anything happened to the baby inside me then I wouldn’t be able to feel it. However the nine months flew past and I had a lovely pregnancy and felt really healthy throughout.

I was told close family and friends. We never tried to exploit it in the media like other families would, or gain any financial benefit. The danger of telling other school children would be that they would punch you and then say, ‘Did that hurt?’ There was also a danger of feeling invincible and showing off. We are aware of a child with the same condition who jumped from a building and over again to impress friends.

By our teens we became responsible for our physical health and were aware of the dangers we faced in life. We rarely thought about it through our teens and twenties. There were odd trips to hospital for X-rays and checks and safety measures became part of my daily routine. Examples include: putting on the cold tap before the hot, checking my nails aren’t sharp before I go to sleep, placing magazines on my lap before placing down a hot dinner tray and using blunt knives in the kitchen.

My sister and I didn’t know the reason why we didn’t feel pain. I started to think about this more carefully in my late twenties and now that the internet was at hand, decided to carry out my own investigation. I sent off emails around the country to different doctors. That led to finding out more information from the lovely Dr Bowsher at the Liverpool Pain Institute and finally being properly diagnosed by the wonderful Dr Woods at Addenbrookes. The internet was also brilliant for getting in touch with people all over the world who have the same condition or a variance of it. I found that I shared similar experiences both physically and psychologically with others.

I was hoping I wouldn’t experience any further problems as an adult but I’ve been through hell over the last seven months. Our friend in Norway who has the same condition and has two children said that having children was payback for the trouble you had when you were young. You can have a wonderful experience giving birth pain free! I was quite anxious about having a baby as I thought if anything happened to the baby inside me then I wouldn’t be able to feel it. However the nine months flew past and I had a lovely pregnancy and felt really healthy throughout.

I was told close family and friends. We never tried to exploit it in the media like other families would, or gain any financial benefit. The danger of telling other school children would be that they would punch you and then say, ‘Did that hurt?’ There was also a danger of feeling invincible and showing off. We are aware of a child with the same condition who jumped from a building and over again to impress friends.
Parkinson’s disease didn’t stop Terry from staying on track … and running 17 marathons all over the world.

At UCB CNS, our passion for delivering innovative solutions is driven by the desire to make a real difference to the lives of people with Parkinson’s disease who inspire us, like Terry.
Self-Assessment Colour Review of Neuroimaging

This book pleases, educates, and frustrates, though not in equal measure.

The authors provide "a case-based teaching text on imaging of the central nervous system...offering readers over one hundred real-life clinical cases for interpretation". Hmm, but how often in anyone's real-life practice does a cerebellopontine angle lesion in a dizzy forty-one year old come slap bang after a case of alobar holoprosencephaly in a foetus?

This book "while primarily written for radiologists...will also be of interest to neurologists" say the authors, and it is. But I'll tell you what I want (what I really really want) is not a book of completely random cases. It is order, Mr Speaker.

Though the cases are informative well illustrated, and accompanied by helpful radiological differential diagnoses, the "crikey what's the next case going to be?" frisson of excitement is rather trumped by the mind-boggling leap from rhomboencephalosynapsis (I hadn't heard of it, either) to Gibb's "artifact" (which drew a heavy sigh and "you really should get out more" type expression from one of my neuroradiologists when I tried to show off by lobbing it into a discussion recently).

What would be really helpful is something small that fits easily into a briefcase which I can dip into when faced with colleagues ambushing you as you nip to the loo with a "can I quickly show you these scans?" type corridor consult. What neuroradiologists would find more practical (I think) would be a book structured into sections such as "tumour or abscess -- when you can be sure" or "perivascular space or stroke -- you decide" or "multifocal cerebral calcification -- sorting the wheat from the chaff!" that sort of thing.

Accessing, learning, and retaining information is facilitated by order and there seems little if any order (other than an alphabetical index) to this otherwise excellently presented series of radiological case vignettes which for this neuroradiologist (and I imagine at least some radiologists) will make reading this book slightly more of a struggle than the pleasure it would otherwise be.

Oh and one other thing. I think that black or white (but not both?) is technically a colour but there are a grand total of two images in this entire book with hues other than these so in this current climate of transparency and accountability I'm not sure that the title of this book quite cuts the mustard.

Dementia in Clinical Practice

This short and well-produced text, from the Karger Frontiers of Neurology and Neuroscience series, comprises four sections, devoted to Alzheimer's disease (seven chapters), vascular dementia, Lewy body dementia, and frontotemporal dementia (four chapters each). Each section has short chapters describing clinical features and investigation, neuropathology, neuroimaging, and pharmacotherapy, the additional chapters in the Alzheimer's section addressing mild cognitive impairment, electrophysiological markers, and novel neuroimaging methods with PET ligands.

Although the UK National Dementia Strategy has emphasised the need for dementia to be diagnosed by a "clinician with specialist skills", this book, by authors from continental Europe and North America, aims to "facilitate reading for a non-specialist" and the role of primary care physicians (PCPs) is emphasised (e.g. p. 54 et seq., 66 et seq. 126, 135 et seq.), although it is not clear to me whether PCPs will wish to immerse themselves in the arcana of frontal lobe dementia neuropathology and nomenclature or the molecular techniques of imaging in Alzheimer's disease.

Having recently been accused, by a very experienced book reviewer who frequently contributes to these pages, of being a "fuss pot" in my reviews, I shall eschew all comments on the typography etc. of this book, merely observing that some chapters seem a little truncated, for example the abstract of Kertesz's chapter on the clinical features and diagnosis of frontotemporal dementia states that "galantamine in aphasia had symptomatic benefits in small trials" but there is no subsequent mention of this in the text of the chapter.

Overall, I would think this book well suited to trainees developing an interest in cognitive disorders

Overall, I would think this book well suited to trainees developing an interest in cognitive disorders, as well as more experienced dementia specialists, rather than for PCPs. However, cost may prove prohibitive.

If you would like to review books for ACNR, please contact Andrew Larner, Book Review Editor, c/o rachael@acnr.com

Book Reviews
Britannia’s UK network of Nurse Advisors has been established to assist healthcare professionals, patients and their carers in the initiation, through-care and maintenance of APO-GO therapy. Our Nurse Advisors in APO-GO (NAAs) can also liaise between primary and secondary care teams, offering on-going support in the community.

Britannia supports the NICE recommendation that patients with Pd should have regular access to support via a specialist nurse. Our NAA team aims to enhance access to care for APO-GO patients.

- Extensive on-going training and materials for patients and HCP support team
- Free starter pack of APO-GO PENS for Challenge procedure
- Exclusive APO-GO Pump and peripherals provided
- Homecare delivery service
- Delivery of APO-GO within 36 hours direct to chemist or pharmacy (emergency supply can be delivered same day)**
- Patient newsletter
- 24/7 Helpline and APO-GO website

To find out about Britannia’s Nurse Advisors in APO-GO team and how they might be able to help you and your patients, or about any other aspect of the APO-GO Package of Care, please contact us on 0844 880 1337 or visit our website www.apo-go.co.uk

*Contact the Helpline regarding availability in your area.
**During the working week for most geographical locations.
Neurological Signs: Geophagia (Geophagia) and Pica (Pagophagia)

29th November [1870] – Sufraz is the name of the disease of clay or earth eating, at Zanzibar, it affects slaves, and the clay is said to have a pleasant odour to the eaters, but it is not confined to slaves, nor do slaves eat in order to kill themselves, it is a diseased appetite, and rich men who have plenty to eat are often subject to it. The feet swell, flesh is lost, and the face looks haggard; the patient can scarcely walk for shortness of breath and weakness, and he continues eating until he dies.

This extract from the last journals of Dr David Livingstone describes geophagia (geophagia) or clay eating. This may also fall under the rubric of pica, or pagophagia, a morbid craving for unusual or unsuitable food. Another example may be found in the novel One hundred years of solitude by Gabriel Garcia Marquez. It published in 1967, concerning an eleven year old girl, Rebeca, who arrives in the town of Macondo carrying a canvas sack which contains her dead parents’ bones: “Rebeca only liked to eat the damp earth of the courtyard”. The behaviour recurs later in her life when she experiences the passion of unrequited love.

Although one might possibly dismiss the latter account as nothing more than “magic realism”, pica is a recognised symptom in childhood, sometimes associated with brain damage, learning disability, and emotional distress. Other inedible items which are sometimes eaten include paper and paint. Sufferers are obviously at risk of infection from contaminated foods, such as soil. An association of pica with iron deficiency is well recognised, as is a link with pregnancy. Livingstone noted “clay built in walls is preferred, and Manyuema women when pregnant often eat it”. Reports of geophagia have been found dating back to Hippocrates.

Geophagia may be associated with neurological complications. Cases have been reported of flaccid quadriparesis and of proximal myopathy associated with profound hypokalaemia in the context of geophagia. Livingstone mentioned weakness associated with clay eating (see above); he also mentioned “A Banyamwezi carrier, who bore an enormous load of copper, is now by safura scarcely able to walk”. A previous review of neurological problems described by Livingstone in his many writings failed to note this particular syndrome of geophagia-associated weakness. The loss of flesh associated with geophagia which was noted by Livingstone was re-reported almost a century later as “Cachexia Africana”.

Correspondence to:
AJ Lamer, Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool, L9 7UL, UK.

AJ Lamer Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery.
Email: a.lamer@thewaltoncentre.nhs.uk

REFERENCES

ABBREVIATED PRESCRIBING INFORMATION
Consult Summary of Product Characteristics before prescribing. Uses: The treatment of disabling motor fluctuations ("on-off" phenomena) in patients with Parkinson’s disease which persist despite individually titrated treatment with levodopa (with a peripheral decarboxylase inhibitor) and/or other dopamine agonists. Dosage and Administration: Apomorphine hydrochloride is administered subcutaneously either as an intermittent bolus injection or by continuous subcutaneous infusion. Its rapid onset (5-10 mins) and duration of action (about 1 hour) may prevent an “off” episode which is refractory to other treatments. Hospital admission under appropriate specialist supervision is necessary during patient selection and when establishing a patient’s therapeutic regime. Please refer to the Summary of Product Characteristics for full details before initiating therapy. Treatment with domperidone (typical dosage 20mg three times a day) before and during apomorphine HCl therapy is essential. The optimal dosage of apomorphine HCl has to be determined on an individual patient bases; individual bolus injections should not exceed 10mg and the total daily dose should not exceed 100mg. Contraindications: Children and adolescents under 18 years. Pregnancy and lactation: Caution should be exercised if prescribing apomorphine to pregnant women and women of childbearing age. Breast-feeding should be avoided during apomorphine HCl therapy. Interactions: Patients should be monitored for potential interactions during initial stages of apomorphine treatment: as follows: 30mg in 3ml – basic NHS cost £123.91 per carton of 5 pens. Apomorphine is used with other medications that have a narrow therapeutic window. It should be noted that there is potential for interaction with neuroleptic and antihypertensive agents. Precautions: Use with caution in patients with renal, pulmonary or cardiovascular disease, or who are prone to nausea or vomiting. Extra caution is recommended during initiation of therapy in elderly and/or debilitated patients. Since apomorphine may produce hypotension, care should be exercised in patients with cardiac disease or who are taking vasoactive drugs, particularly when initiating postural hypotension is an existing. Neuropsychiatric disturbances are common in Parkinsonian patients. Apo-go should be used with special caution in these patients. Apomorphine has been associated with somnolence and other dopamine agonists can be associated with sudden sleep onset episodes, particularly in patients with Parkinson’s disease. Patients must be informed of this and advised to exercise caution whilst driving or operating machines during treatment with apomorphine. Haematology tests should be undertaken at regular intervals as with levodopa with given concurrently with apomorphine. Pathological gambling, increased libido and hypersexuality have been reported in patients treated with dopamine agonists, including apomorphine. Side Effects: Local induration and nodules (usually asymptomatic) often develop at subcutaneous site of injection leading to areas of erythema, tenderness, induration and (rarely) ulceration. Pruritus may occur at the site of injection. Drug-induced dyskinesias during “on” periods can be severe, and in a few patients may result in cessation of therapy. Postural hypotension is seen infrequently and is usually transient. Transient sedation following each dose of apomorphine may occur at the start of therapy, but this usually resolves after a few weeks of treatment. Nausea and vomiting may occur, particularly when apo-go treatment is initiated, usually as a result of the omission of domperidone. Neuropsychiatric disturbances (including transient mild confusion and visual hallucinations) have occurred during apomorphine therapy and neuropsychiatric disturbances may be exacerbated by apomorphine. Positive Coombs’ tests and haemolytic anaemia have been reported in patients receiving apomorphine and levodopa therapy. Pathological gambling and hypersexuality have been reported. Eosinophilia has occurred in only a few patients during treatment with apomorphine HCl. Patients treated with dopamine agonists, including apomorphine, have been reported as exhibiting signs of pathological gambling, increased libido and hypersexuality (especially at high doses). Apomorphine is associated with somnolence. Breathing difficulties have been reported. Prescribers should consult the Summary of Product Characteristics in relation to other side effects. Presentation and Basic Information: Apo-go ampoules contain apomorphine hydrochloride 10mg/ml, as follows: 20mg in 2ml – basic NHS cost £37.96 per carton of 5 ampoules. 50mg in 5ml – basic NHS cost £73.11 per carton of 5 ampoules. Apo-go pens (disposable multiple dosage injector system) contain apomorphine hydrochloride 10mg/ml, as follows: 30mg in 3ml – basic NHS cost £123.91 per carton of 5 pens. Apo-go Pre-filled syringes contain apomorphine hydrochloride 5mg/ml, as follows: 50mg in 10ml – basic NHS cost £73.11 per carton of 5 syringes. Marketing Authorisation Numbers: Apo-go Ampoules: PL04483/0064. Apo-go Pens: PL04483/0085. Apo-go Pre-filled syringes: PL05929/0025. Legal Category: POM. Date of last revision: November 2008. For further information please contact: Britannia Pharmaceuticals, Park View House, 65 London Road, Newbury, Berkshire, RG14 1JN, UK.
Longitudinal Neurophysiologic Assessment of Disease of the Peripheral Nervous System

Electrophysiologic methods used to assess peripheral nerve, neuromuscular junction and muscle are collectively known as electrodiagnostic studies. As the name implies, they provide valuable tools for diagnosis of neuromuscular disorders; their utility, however, extends beyond initial diagnosis. Longitudinal electrodiagnostic studies can assess the progression of neuromuscular disease and guide therapeutic decisions. This review summarizes the role of longitudinal studies in evaluating disorders of peripheral nerves, motor neurons, neuromuscular transmission and muscle.

Peripheral nerve
Electrodiagnostic studies play a pivotal role in the prognosis and management of traumatic nerve injuries. Initial studies, usually performed within the first month, serve to determine the location and degree of injury. Both of these will influence prognosis and management decisions. Nerve conduction studies may identify conduction block, the hallmark of neuroapraxia, which typically portends spontaneous recovery within a few months. For cases with more axonal injury, initial needle EMG determines the level of denervation. Particularly important is detection of low-level innervation remaining within clinically paralyzed muscles. Since this may eventually provide considerable recovery, it argues for conservative management.

Repeated electrodiagnostic assessment guides management of nerve injuries that have completely denervated muscles. It is important to identify early evidence of successful regeneration as it generally contraindicates surgical intervention. Needle EMG will often demonstrate reinnervation of muscles months before clinical return of motor function. This is of particular importance in assessing muscles at some distance from the site of injury. If surgical intervention is required, it cannot be delayed for too long since axons regenerating through sutured or grafted segments must ultimately reach their target muscles before atrophy and fibrosis supervene.

If standard EMG does not provide evidence of regeneration within a reasonable time window, surgical exploration with intraoperative nerve conduction studies becomes the best guide for management. The crucial question is whether there has been significant regeneration of axons through injured segments or neuromas remaining in gross continuity. Following surgical exposure, the injured nerve segment is suspended between paired hook electrodes. A nerve action potential recorded across the segment signifies sufficient regeneration to obviate any nerve resection, suturing or grafting.

The electrodiagnostic evaluation of polyneuropathy serves to identify the relative contributions of demyelination versus axonal loss. Decrease in compound motor action potential (CMAP) and sensory nerve action potential amplitude correlates reasonably well with axonal loss, though a few caveats bear consideration. Occasionally, low CMAP and SNAP amplitudes reflect very distal conduction block rather than denervation. Furthermore, CMAP amplitude may vary with electrode placement. Summed values of CMAP amplitudes from multiple nerves, therefore, provide a more consistent and reliable assessment of severity. Inflammatory demyelinating neuropathies such as CIDP or MMN will typically evolve with an increasing burden of secondary axonal degeneration. If repeated electrodiagnostic studies document progressive axonopathy, then a prolonged course of immunomodulating therapy may be required before any clinical improvement becomes apparent.

Nerve conduction studies can influence the management of diabetic neuropathy by identifying features of coexistent inflammatory neuropathy or nerve entrapments. Apart from these features, conduction studies add little to the management of diabetic neuropathy by identifying features of coexistent inflammatory neuropathy or nerve entrapments. Apart from these features, conduction studies add little to the management of diabetic neuropathy. Clinical trials investigating treatments for diabetic neuropathy on the other hand, have made use of serial nerve conduction studies. Composite scores of multiple nerve conduction parameters appear to be a particularly helpful tool for assessing the course of neuropathy in multicenter clinical trials.

Motor neuron
Given the paucity of established treatments for motor neuron disease, serial electrodiagnostic
Neuromuscular transmission is amenable to physiologic assessment over time because electrodiagnostic tools accurately quantify the underlying physiologic deficit. Disease at the neuromuscular junction results in reduction of the safety factor of neuromuscular transmission, which when insufficient, causes failure of neuromuscular transmission and muscle weakness. Single fibre EMG (SFEMG) measures jitter, a manifestation of the variation in muscle fibre electrical potentials within the muscle. The interference pattern is full and the amplitude of the interference is reduced as the patient worsened. It has correlated with changes in treatment, strength, endurance, and clinical status. Pre-synaptic disorders may be thought of as rapidly reversible distal motor axonopathies. CMAP amplitude accurately reflects the number of functioning distal motor axonal termini, i.e., pre-synaptic membranes, with precision.

Muscle

In general, needle electromyography parallels the course of myopathy, particularly those characterised by muscle fibre necrosis. Simulation studies indicate that conditions increasingly likely to occur over time, such as reduced number of muscle fibres, increasing variability of mean fibre diameter, and regenerating muscle fibres, will result in complex MUPs with longer durations and higher amplitudes than normal. In contrast, early in the course of myopathy, loss of muscle fibres occurs alone, creating simple MUPs of normal amplitude but short duration. Correlation of EMG with muscle pathology in polymyositis confirms these conclusions, with worse EMG findings indicative of more severe pathology. Short-duration MUPs become longer-duration polyphasic MUPs as disease progresses from acute to chronic, corresponding to the presence of regenerating muscle fibres on muscle biopsy. Abnormal spontaneous activity, common in the acute phases of polymyositis/dermatomyositis, becomes less prevalent with duration of symptoms and with response to treatment.

The longitudinal pattern is somewhat different in muscular dystrophy. In pre-symptomatic muscular dystrophy, muscles are unlikely to show abnormalities using conventional EMG. However, QEMG has shown increased MUP amplitudes in apparently normal muscles of patients with muscular dystrophy. This may arise from either hypertrophy from overuse to compensate for other weak muscles or from fibre splitting. As disease progresses and muscles weaken, polyphasic MUPs appear most likely due to fibre-diameter variation and fibre necrosis causing desynchronisation of muscle fibre electrical potentials within the MUP. The interference pattern is full and recruitment of MUPs is early. Fibrillation potentials and positive waves indicate ongoing muscle fibre necrosis. As the dystrophy

Neuromuscular Transmission

Neuromuscular transmission is amenable to physiologic assessment over time because electrodiagnostic tools accurately quantify the underlying physiologic deficit.

Serial measurements documenting the progression of ALS over one year. Motor unit number estimates (MUNE) decline earlier and faster than isometric grip strength or thenar compound motor action potential (CMAP) amplitude. Adapted from ref. 7.
Through winning runs and losing streaks, she’s always on the sidelines. That’s why she needs an MS therapy that fits in with her life. Once-weekly Avonex is proven to slow the progression of the disease over the long term and has been shown to have a significantly higher adherence rate than other DMTs. Which means, come rain or shine, she’ll be willing him on.

Her other weekly commitment

(since 2000)

Prescribing information may be found on adjacent page
Prescribing information: AVONEX® (interferon beta-1a)
Please refer to the Summary of Product Characteristics for further information.

Indication: For the treatment of patients with relapsing multiple sclerosis or patients who have experienced a single demyelinating event with an active inflammatory process who are determined to be at high risk of developing clinically definite multiple sclerosis.

Dosage and Administration: 30 μg injected IM once a week.

Clinical Trials: In clinical trials, AVONEX® was well tolerated. The most commonly reported symptoms are of the flu-like type: myalgia, fever, chills, sweating, injection site pain, injection site erythema, injection site induration, myalgia, arthralgia, pain in extremity, back pain, muscle stiffness, musculoskeletal stiffness.

Legal Classification: POM.

Adverse events: Adverse events should be reported. Reporting forms and instructions may be obtained from the Product Licence Holder.

Adverse effects: The most commonly reported symptoms are of the flu-like type: myalgia, fever, chills, sweating, injection site pain, injection site erythema, injection site induration, myalgia, arthralgia, pain in extremity, back pain, muscle stiffness, musculoskeletal stiffness. Commonly reported symptoms are of the nervous system type: dizziness, headache, injection site pain, muscle stiffness, fatigue, malaise. Psychiatric disorders: depression, insomnia. Legal Classification: POM. Pack Size and UK NHS Price: Box containing four injections £654, box containing twelve injections £1692. Reimbursed through High Tech Scheme in Ireland.

Packaging quantities: Lysophospholipid: 1 box containing four vials. Each vial contains 3 ml of a 1 mg/ml solution of interferon beta-1a for intramuscular injection. Each vial contains 30 μg of interferon beta-1a for intramuscular use.

Adverse events should be reported. Reporting forms and information can be found at www.yellowcard.gov.uk or www.imb.ie Adverse events should also be reported to Biogen Idec on 0800 008 7401 (UK) or 1800 612 719 (Ireland).

Date of preparation: February 2009

References:

Progresses, MUP amplitude declines. MUP duration shortens and fibrillations become scarcer, from further fibre loss and fibrosis, and the small diameter of surviving muscle fibres. Satellite potentials are also seen, secondary to dramatic slowing in propagation velocity in regenerating or small muscle fibres. In endstage muscle, electrical silence ensues, with no voluntary MUPs and decreased insertional activity. Fibrillation potentials are no longer seen. CMAP amplitudes decline over time but at a less useful pace for following the disease and usually do not become obviously abnormal until the muscle is overtly atrophic.

References:
Recent Developments in the Pathology of Motor Neurone Disease

Motor neurone disease (MND), or amyotrophic lateral sclerosis (ALS), is a progressive neurological condition characterised primarily by the degeneration and loss of motor neurones. Although the term MND is sometimes taken to include spinal muscular atrophy (SMA), a pure lower motor neurone degeneration in almost all cases associated with mutations in the survival motor neuron (SMN) gene, it is used here to refer only to those mixed upper and lower motor neurone degenerations of usually adult onset which occur predominantly sporadically (90%), although rare genetic forms are well known. In this article, we will briefly describe the clinical features of MND before discussing the pathology in the context of recent discoveries which have already fundamentally altered our approach to histopathological diagnosis, and which have the potential to enhance greatly our understanding of MND pathogenesis.

Clinical features of MND
MND usually presents from middle age onwards. The classical form shows signs of upper and lower motor neurone dysfunction, although occasionally pure upper or lower motor neurone signs may be present; in these instances the clinical syndrome may be termed primary lateral sclerosis or progressive muscular atrophy respectively. A further variant, bulbocerebellar MND, presents as difficulties with speech or swallowing. A large proportion of cases of non-classical MND will evolve into a more typical form of the disease over time. In approximately 10% of cases, MND is associated with frank frontotemporal dementia (FTD), reflecting pathological involvement of the non-motor cortex. The course of the disease is inexorable and median survival of cases of classical MND is 3-5 years, death usually being due to involvement of respiratory muscles. The only available effective treatment for MND is Riluzole, a drug which seems to block excitotoxicity and has been shown to increase survival by around two months.

Genetics of MND
Although the great majority of cases are sporadic, a number of families have been described in which MND is inherited in a monogenic fashion. Although some of these pedigrees do not manifest classical MND, there are a number of autosomal dominant mutations that do segregate with a typical clinical syndrome, notably those in genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein of 43KD (TARDBP), fused in sarcoma (FUS) and angiomogen (ANG), as well as an as yet unidentified gene on chromosome 9. Using genome-wide association studies, attempts have also been made to identify alleles which modify the risk of developing sporadic MND. However, despite the substantial size and statistical power of many of these analyses, no robust associations have yet emerged.

Pathological features of MND
Microscopically, there may be little to see in a case of MND. Atrophy of the primary motor cortex (pre-frontal gyrus) may sometimes be apparent, and there is usually shrinkage and brown/grey discolouration of the anterior nerve roots at all levels of the spinal cord, reflecting myelin loss secondary to lower motor neurone axonal degeneration (Figure 1a,b). Similarly, neurone loss may be reflected in a loss of myelin staining within the corticospinal tracts of the spinal cord. Microscopically, there is loss of motor neurones from the anterior horn of the spinal cord, from the primary motor cortex and from the hypoglossal nucleus in the lower medulla. Cell loss is accompanied by gliosis, and some of the surviving motor neurones contain ubiquitinated cytoplasmic inclusions of a variety of morphological types, including spherical Lewy body-like inclusions and skeins of thread-like structures. The inclusion bodies of MND, in common with those of most other neurodegenerative diseases, are immunoreactive for ubiquitin, the protein tag that most cell types use to mark misfolded or otherwise damaged proteins for degradation. However, those seen in most other diseases also contain a specific disease-associated protein which usually constitutes the majority of the inclusion. The best-known example of this is probably α-synuclein in the Lewy bodies of Parkinson’s disease, which also underscores the point that these disease-associated proteins have, in most cases, been shown to play a major role in pathogenesis. Until recently, no such protein had been identified in MND, although the existence of a form of pure FTD in which the pathological cortical intraneuronal inclusions demonstrate the same ubiquitin-only immunoreactivity seen in MND suggested that the underlying disease process may in fact give rise to a wide clinico-pathological spectrum of disorders. Finally, in late 2006, a landmark study published by the laboratory of Virginia Lee at the University of Pennsylvania adopted a novel, if labour-intensive, approach to unmask the dominant protein component of the inclusions seen in these diseases. Using cases of ubiquitin-
only immunoreactive FTD, size-restricted frac-
tions were prepared from cortical protein
extracts by urea extraction, and used to immu-
rise mice. Hybridoma cultures were then pre-
pared from these mice, and supernatants from
these were screened by immunohistochemistry
on sections of cortex from the same FTD cases.
Two distinct monoclonal antibodies were thus
identified which strongly labelled the pathologi-
cal inclusions, and both were found to be direct-
ated against the TAR DNA-binding protein of 43KD
(TDP-43), a ubiquitously expressed nuclear RNA
splicing factor previously implicated in transcrip-
tional repression and exon skipping. Antibodies
against TDP-43 were found to label inclusions in
almost all of the diseases which were previously
classed as ubiquitin-only immunoreactive,
including sporadic pure MND. The data suggest-
ed that TDP-43 is eliminated from the nucleus of
diseased neurons prior to forming cytoplasmic
inclusions (Figure 1g) in which it exists mainly
as cleaved, phosphorylated fragments.

Numerous follow-up studies confirmed TDP-43
as the dominant component of inclusion
bodies in sporadic, and most familial, forms of
MND (Table 1). However, a few inherited forms
of MND were shown not to be associated with
TDP-43 immunoreactive pathology among them
MND resulting from SOD1 mutations.12 These
findings have led to the recognition of so-called
primary TDP-43-proteinopathies as a new astro-
logical class of neurodegenerative diseases.12
The discrepancy between presence of TDP-43
pathology in the vast majority of MND cases and
its absence in SOD1-linked disease may have
profound implications for basic research, which
has relied heavily on SOD1-linked models for
the past 15 years.12

Pathogenesis of MND
Over the years, a number of factors have been
postulated to have a role in MND pathogenesis,
most notably mitochondrial dysfunction, oxida-
tive stress and abnormalities of intracellular
transport.1 With the discovery of TDP-43 as the
core component of MND pathology, attention
has now shifted to the role it may play in dis-
ease development. The identification of TDP-43
in disease-associated inclusion bodies does not
in itself demonstrate a pathogenic role; howev-
er, it was shown early last year that mutations in
the TARDBP gene, which codes for TDP-43, were
sufficient to cause MND in rare cases of familial
disease.1 Although the precise pathophysiological
mechanisms linking TDP-43 to disease
remain largely obscure, it is becoming clear that
aberrant mRNA splicing may be critical, as path-
ogenic mutations in another mRNA splicing
factor (FUS) have been identified in another
inherited form of typical MND.1 The discovery of
a role in mRNA processing for the SMN gene
implicates this process more generally in ante-
rior horn cell loss syndromes.1

Future developments
Although it is hoped that these recent advances in
understanding MND might one day translate
to therapeutic approaches, it is clear that the
current research priority is to gain a fuller
understanding of the molecular events which
link dysfunction in TDP-43 or in other com-
pONENTS of the mRNA splicing machinery to the
disease. Nonetheless, if a central role for dys-
functional mRNA splicing can be confirmed,
this raises the intriguing possibility that MND
could potentially be treated with RNA-based
agents which modulate this process. The broad
approach has already been well validated in
vitro and in experimental animals, and clinical
trials of such treatments for a range of other dis-
eases are already underway.12

Table 1: The presence or absence of TDP-43 pathology in motor
nervous system diseases.

<table>
<thead>
<tr>
<th>SUBTYPES</th>
<th>TDP-43 PATHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sporadic disease</td>
<td></td>
</tr>
<tr>
<td>MND/ALS</td>
<td>Yes</td>
</tr>
<tr>
<td>Basophilic inclusion variant</td>
<td>No</td>
</tr>
<tr>
<td>MND due to single gene mutations</td>
<td></td>
</tr>
<tr>
<td>SOD1</td>
<td>No</td>
</tr>
<tr>
<td>Chr 9p-associated</td>
<td>Yes</td>
</tr>
<tr>
<td>TDP-43</td>
<td>Yes</td>
</tr>
<tr>
<td>FUS</td>
<td>No</td>
</tr>
<tr>
<td>ANG</td>
<td>Unknown</td>
</tr>
<tr>
<td>VAPB</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Figure 1: Pathology of classical MND. (a) Gross atrophy of the primary motor cortex (arrow) in a patient with the pri-
mary lateral sclerosis variant of MND. (b) Note thinning and
brown discoloration of atrophic anterior roots (arrow). (c,
d) Compare a normal anterior horn cell (g) with a degener-
cating cell containing eosinophilic Bunina bodies (arrow) which
are typical of classical MND (e, f, g) TDP-43 protein (brown
reaction product) is normally located in the nucleus of
anterior horn cells (e), note sparing of the nucleolus (blue).
In classical MND TDP-43 is predominantly located in the
cytoplasm (f, g). Granular dispersion (f) is believed to be a
precursor of more compact aggregates such as the filaments
or skeins” shown in (g) (e, f, g TDP-43 immunocytochem-
istry against native protein).

REFERENCES
1. Gross-Louis F, Caspar C, Rouleau GA. Genetics of famil-
ial and sporadic amyotrophic lateral sclerosis. Biochem
2. Brooks BR. Managing amyotrophic lateral sclerosis:
delaying disease progression and improving patient quali-
mutations in familial and sporadic amyotrophic lateral
4. Vance C, Rujopkij W, Hörtlinger T, De Vos N, Nishimura
AL, et al. Mutations in FUS, an RNA processing protein,
cause familial amyotrophic lateral sclerosis type 4.
5. Chiò A, Schymick JC, Restagno G, Scholz SW, Lombardo
f, et al. A two-stage genome-wide association
study of sporadic amyotrophic lateral sclerosis. Hum
6. Ince PG, Evans I, Knopp M, Forster G, Hansdall HJ,
Wharton SB, Shaw PJ. Corticospinal tract degeneration
in the progressive muscular atrophy variant of ALS.
7. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ,
Jakes R, Goedert M. Alpha-synuclein in Lewy bodies.
8. Tabib A, Angal D. Recent advances in the genetics of
amyotrophic lateral sclerosis and frontotemporal demen-
tia: common pathways in neurodegenerative disease.
9. Neumann M, Sampathu DM, Kwong LC, Truax AC,
Miciensky MC, et al. Ubiquitinated TDP-43 in frontotem-
poral lobar degeneration and amyotrophic lateral scle-
10. Kwong LC, Neumann M, Sampathu DM, Lee VM,
Trojanowski JQ. TDP-43 proteinopathy: the neuropathol-
ogy underlying major forms of sporadic and familial
frontotemporal lobar degeneration and motor neuron dis-
Pathological TDP-43 distinguishes sporo-
dic amyotrophic lateral sclerosis from amyotrophic
lateral sclerosis with SOD1 mutations. Ann Neurol
12. Gasser R, Martinez-Lage M, Robinson J, Uryu K,
Neumann M, Brandner NJ, et al. Clinical and patho-
14. Rothstein JD.
15. Wood M, Yin H, McCall G. Modulating the expression

For the treatment of patients with Parkinson’s disease and end-of-dose motor fluctuations not stabilised on their current levodopa/DDC inhibitor treatment.
Anita Harding (1952-1995)

Anita Harding, professor of neurology in the University of London, died from cancer in 1995 shortly before her 43rd birthday; she had been ill for only five months. With an indelible and zest for life, an earthy sense of humour and feet firmly on the ground, she was a rare talent for friendship amongst the many and varied people with whom she interacted, and having a natural flair for sensing and capturing the complex and mysterious ingredients of elite professional success, early death denied Anita the many accolades and appointments that her combination of personality and ability would inevitably have yielded in due course. And, in turn, neurology never benefitted to the full from the many further contributions and outstanding leadership that she would surely have provided.

Anita was unable to participate in the discoveries of neurogenetics that modern molecular medicine has made possible. And a generation of neurologists trained since the mid-1990s lost the opportunity of mentorship and supervision by an outstanding clinical neurologist and a very special person. There is no sense in which these losses might be considered speculative or judged ambiguous. Anita was on a trajectory to greatness that was unstoppable. Her achievements in a career which was active from 1977 until a few days before her death were already outstanding, and as the leading clinician scientist of her generation working in the United Kingdom, Anita already ranked as a major figure in late-20th century world neurology.

Born in Ireland, Anita Harding grew up and was educated in Birmingham; she trained in medicine at the Royal Free Hospital School of Medicine (1970-1975) winning a number of undergraduate prizes. As a student she visited the neurological department of the Montreal General Hospital. After hospital appointments at the Royal Free with Professor Dame Sheila Sherlock and Professor PK Thomas (whom she later married), and in Oxford, she trained in general medicine, becoming a member of the Royal College of Physicians in 1977. She worked first at the National Hospital, Queen Square (where her later career was to be based) in 1977 and subsequently joined Dr Cedric Carter as a research fellow in the MRC Clinical Genetics Unit at the Institute of Child Health. Thus began the work that was to shape her career. First she classified monogenic diseases of the nervous system with an emphasis on the hereditary ataxias and peripheral neuropathies. These studies formed the basis for her doctoral thesis on The Hereditary Ataxias and Paraplegias: a Clinical and Genetic Study; for this work, she was awarded the Clinical Genetics Society prize and the Edith Pechey Phipson Postgraduate Scholarship from her medical school. Later, she reworked the text into a monograph on The Hereditary Ataxias and Related Disorders published by Churchill Livingstone in 1984. Her single most important discovery published in Nature with Ian Holt and John Morgan-Hughes in 1986 was the first identification of a mitochondrial DNA mutation in human disease and the concept of tissue heteroplasmy of mutant mitochondrial DNA. But Anita also published on the spectrum of trinucleotide repeat disorders in neurodegenerative disease, and on the population genetics of diseases showing ethnic or geographic restriction. Her curriculum vitae records that she secured substantial grant support for her work, supervised five doctoral theses, wrote almost 200 original articles, over 100 reviews or chapters, edited 3 books in addition to her monograph, gave 100 presentations at scientific meetings, and delivered more than 200 invited lectures in the United Kingdom and abroad.

In the year before taking up her post as senior lecturer and honorary consultant at the Institute of Neurology in 1986, Anita had visited laboratories in Cardiff (United Kingdom) and the California Institute of Technology, Massachusetts General Hospital, Seattle, Duke and Denver (USA); these visits proved pivotal in matching her clinical expertise with a knowledge of the emerging discipline of molecular genetics. The subsequent rise in Anita’s career was meteoric. She was appointed reader in the University of London and consultant in neurology to the National Hospital in 1987, elected to a personal professorship in 1990, and to the established chair of neurology at the Institute of Neurology in 1995.

Anita’s appointments outside Queen Square were equally distinguished. She was elected to Fellowship of the Royal College of Physicians in 1989 and to ten other societies, including corresponding membership of the American Neurological Association. With others, she founded the European Neurological Society in 1986.
Adults and elderly:

Use and handling. B only and are not relevant to preparations of Botulinum Toxin Type A. See SPC for instructions for free 0.9% sodium chloride solution for injection. Dosage units are specific to botulinum Toxin Type B only and are not relevant to preparations of Botulinum Toxin Type A. See SPC for instructions for use and handling.

For intramuscular (IM) administration only. Must only be administered by experienced physicians. When low doses are required, it must be diluted before use with preservative-free 0.9% sodium chloride solution for injection. Changes such as in botulinum Toxin Type A only are not relevant to preparations of Botulinum Toxin Type B.

Dose and administration:

Indication:

Treatment of cervical dystonia (torticollis).

Presentation:

0.5ml, 1ml and 2ml vials containing 2500U, 5000U and 10000U of Botulinum Toxin Type B solution for injection.

Please refer to the SPC before prescribing.

Pregnancy:

Do not use during pregnancy unless clearly necessary. Studies in animals are insufficient to prove human embryonic toxicity. There is no evidence of teratogenicity in animal studies. There is concern regarding the possible risk to the developing embryo/fetus with the use of botulinum neurotoxins. Herbal products and traditional medicines containing Botulinum neurotoxin should be avoided during pregnancy and breastfeeding.

Contra-Indications:

- Hypersensitivity to Botulinum Toxin Type B or any excipient.
- Individuals with obstructive sleep apnoea syndrome or any other condition where swallowing disorders are present.
- Children and adolescents under 18 years:
 - Not recommended

Side effects:

Adverse reactions reported with Botulinum Toxin Type B (toxin-naïve and toxin-responsive) are:

- Mild to moderate muscle weakness.
- Mild to moderate muscle stiffness.
- Dysphagia and aspiration.
- Headache.
- Dry mouth.
- Dizziness.
- Fatigue.
- Nausea.
- Constipation.
- Flu-like symptoms.
- Weakness or other electrophysiological abnormalities in some distant muscles.
- There have been post-marketing reports of exaggerated muscle weakness, dysphagia, aspiration, pneumonia with fatal outcome in some cases, abnormal accommodation, ptosis, vomiting, constipation, flu-like symptoms, and asthenia.

Warnings and Precautions:

- Safe use in patients with underlying neuromuscular disorders is not established.
- Special caution should be exercised in patients with impaired respiratory function.
- Children and adolescents under 18 years:
 - Not recommended

Lactation:

Do not use during lactation unless clearly necessary as it is unknown whether Botulinum Toxin Type B is excreted in breast milk.

Drug Interactions:

No specific interaction studies. Effect of co-administration with other botulinum toxin preparations of Botulinum Toxin Type B is unknown. Caution should be exercised when co-administered with other drugs, which may affect neuromuscular transmission. Neostigmine, pyridostigmine, neostigminemethedate and aminoglycosides may enhance the effect of botulinum toxin Type B. Aminoglycosides may decrease the duration of botulinum toxin Type B induced muscle weakness.

NeuroBloc® (Botulinum toxin Type B) is excreted in breast milk.

Shelf-life:

3 years. Chemical and physical in use stability has been demonstrated for up to 8 hours at 25°C.

Special precautions for storage:

2°C – 8°C. Do not freeze. Protect from light. For storage conditions of the medicinal product, see SPC.

Legal Category:

POM

Basic UK NHS cost:

Botulinum Toxin Type B 0.5ml vial: £111.20, Botulinum Toxin Type B 1ml vial: £148.27 and Botulinum Toxin Type B 2ml vial: £197.20

Irish price to wholesaler:

Botulinum Toxin Type B 0.5ml vial: €152.55, Botulinum Toxin Type B 1ml vial: €197.69 and Botulinum Toxin Type B 2ml vial: €271.19

Marketing authorisation numbers:

Botulinum Toxin Type B 0.5ml vial: EU/1/00/166/001 Botulinum Toxin Type B 1ml vial: EU/1/00/166/002 and Botulinum Toxin Type B 2ml vial: EU/1/00/166/003

Further information from:

Eisai Ltd, 3 Shortlands, Hammersmith, London, W6 8EE

References:

Anita Harding’s clinical wisdom, enthusiasm, talent for research, and extraordinary personality epitomise all that is valued most in a clinical scientist

epitomise its style and activities better than any of her contemporaries. Through her marriage to PK (Peter) Thomas (1926–2008), herself a British neurologist and in the 1960s, Anita witnessed at first hand the diffusion of academic neurology away from the Institute of Neurology and, as a close confidant of Roger Guildiatt, she saw at the same time the long-term significance of Queen Square as a National Hospital. Her special trick was to balance the need to nurture both the centre and the periphery, and to export and maintain excellence and influence through a network of clinical, scientific and personal collaborations. Because she knew her trade, and provided what every patient wants—knowledge, experience, interest, time and hope—her clinical achievement was extensively sought; and Anita blossomed in the warmth of good doctoring.

Anita was a devoted worker for British neurology. The trappings of academic life were heaped upon her because, as a woman of inexhaustible energy, Anita met deadlines and she delivered. These were remarkable achievements for a woman in a traditionally chauvinist specialty; that so much was achieved by the age of 43, in a career which was fully active for more than once she was found absent from a scientific meeting through having disappeared with another lady-professor, to whom accusation she retorted “when the going gets tough, the tough go shopping.”

Outwardly self-assured but never over confident, she was privately self-effacing and there always remained that endearing hint of the gamine. These were essential qualifications for her type of success and they were traits that attracted her to neurologists throughout the world. In their social life, Anita and PK showed remarkable stamina—much more so than many of their guests who, visiting from the other side of the world or the provinces would be entertained until the early hours. On these occasions, Anita excelled in conversation and revealed her breadth of interests—football and cricket in season, contemporary literature and popular culture; she was a tease without malice.
Epilepsy charity asks Department of Health to reconsider drug substitution plans

From January 2010 pharmacists will be obliged to substitute expensive branded drugs with a cheaper generic version. Although essentially the same, there are subtle differences in how different generic forms of a drug are made up and for people with epilepsy those differences could have a catastrophic effect.

Professor John Duncan, NSE’s medical director, said, “Epilepsy is different from other conditions. A single seizure has severe consequences. It impacts on the ability to drive, employment, well being and increases the risk of injury and harm. The cost saving on the drug budget is not worth the potential harm caused and the cost of dealing with seizures.”

The Department of Health’s plans are part of the 2009 Pharmaceutical Price Regulation Scheme. NSE’s communications manager Amanda Cleaver said, “The Department of Health appears not to have consulted with patient groups on this decision. As the UK’s leading medical epilepsy charity our message is clear – anti-epileptic drugs must be exempt from the scheme.” NSE has submitted to the Department of Health recommendations from a round table discussion with key representatives from the pharmaceutical industry who unanimously agreed with NSE’s stance.

The full report and recommendations can be found at www.acnr.co.uk/epilepsy

Tell us what you think
Do you agree that epilepsy drugs should be exempt from the 2009 Pharmaceutical Price Regulation Scheme?
Take part in our 10-second survey on the website at www.acnr.co.uk/epilepsy or email your comments to Rachael@acnr.co.uk

Epilepsy Action
Research Grants Programme 2008-2009

Epilepsy Action invites applications from researchers and students interested in carrying out non-laboratory research into epilepsy. Research project grants, PhD studentships, postgraduate bursaries and travel bursaries are available. Researchers and students working within the British Isles, including Eire, are eligible to apply for funding.

Epilepsy Action is the largest member-led epilepsy organisation in Britain. It acts as the voice for the UK’s estimated 456,000 people with epilepsy, as well as their friends, families, carers, health professionals and the many other people on whose lives the condition has an impact.

Closing date for applications is 9 October 2009

Further information can be found on Epilepsy Action’s website http://www.epilepsy.org.uk/research/awards.html or by contacting Margaret Rawnsley on 0113 210 8800, email research@epilepsy.org.uk

New Anstey House, Gate Way Drive, Yeadon, Leeds LS19 7XY
tel: 0113 910 8800 fax: 0113 391 0300
epilepsy helpline freephone: 0808 800 5050
email: epilepsy@epilepsy.org.uk www.epilepsy.org.uk
Epilepsy Action is a working name of British Epilepsy Association
A Company Limited by Guarantee (registered in England No. 797997)
Registered Charity in England (No. 234343)
The Research Series

If like me, you are a trainee contemplating an academic career, the various stages of an academic career can be very confusing. What does an intermediate fellowship involve? How do you get one? Is post-doctoral time allowed in partnership with clinical work? In the course of my involvement with the ABN Trainees Committee (ABNT), I have seen many trainees who have completed research and fought hard to get a neurology trainee place, particularly after modernising medical careers (MMC). After having fought so hard, it would be a shame if trainees couldn't make decisions because of a lack of information.

The ABNT has developed a number of ideas to plug this information gap. The initial drive and vision came from Dan Blackburn, previous chair of the ABNT at the time of MMC. Having attended a research forum in the US and seeing its' potential to inform trainees, he has set about creating a UK version. He organised one this year with the ABN research representative Beth Mallam, and has written about it in the following pages.

As secretary of the ABNT, I have taken on the editing of this research series in ACNR. In order to provide trainees with the information that they need. Over the next year, we will look at the different steps in the academic pathway. We will ask funders to inform us about their funding strategies, mentor agencies to describe their work and leading figures in Neurology to give us their advice and insight. The series of articles will culminate next year by setting the scene for the research forum next year in Bournemouth, at the ABN conference.

The final resource which the ABNT is providing for trainees is provided by Beth Mallam, our research representative, who is instituting a research networking database. This will include cross-referenced lists of academic neurologists, research groups and research posts available in the UK and will quickly become a vital resource for junior researchers looking for posts. These three strands should combine to provide trainees with the answers to their questions.

One of the questions that the ABNT are often asked is when trainees should do a PhD. The ABNT feel that trainees should aim to secure their training in neurology before committing to neurological research. However, we recognise that in competitive deaneries, research may be required and that with decoupling of ST2 and ST3 posts, more opportunities may be available. Rather than seeing this as prescriptive, we suggest that trainees discuss this issue with the deanery and the head of department. In this first part of the research series, we have sought others’ advice on this issue.

Geraint Fuller, departing chair of the SAC, the committee who decides about our training, has written about the new landscape for PhD research after MMC. He has succinctly explained the different options for trainees about to embark on the journey. I hope that it helps trainees when it comes to making decisions about undertaking research. ◆ Boyd Ghosh, Series Editor.
encouraged to mingle so that trainees could approach senior academics for advice and to establish a mentor relationship.

MMC allows access into research at multiple entry points and aims to improve retention in academic medicine. However, there are concerns that it may preclude research experience for those without clear research intent from the outset. We felt that creating an AAN style research forum would be a valuable opportunity to promote high quality research in UK neurology. The first forum aimed to give practical advice on how to embark on research and move up the academic career ladder.

Research Forum - ABN Academic
Meeting Liverpool July 09

We invited a range of speakers in order to gain varied insights on research in academic and NHS settings.

1. Intermediate Wellcome Fellow. Don Mahad told us about the skills he gained in America, in between finishing his PhD and returning to the UK to take up a Wellcome Intermediate Fellowship.

2. Research as an NHS Consultant. Nikos Evangelou spoke about the possibilities of doing research as an NHS consultant. He discussed National Institute of Health Research (NIHR) funding. This used to be allocated at the discretion of hospital trusts and was not necessarily always spent on research. Now, it is held centrally and represents a considerable financial resource available for clinical research within the NHS.

3. Senior Wellcome Fellow. Professor Tom Solomon spoke of the beginning of his research career in neuro-infectious diseases undertaking simple but effective projects in Africa. He rapidly moved to clinical trials and epidemiological studies in S.E. Asia, spending time in America at the Centre for Disease Control and Prevention (CDC). He emphasised the importance of making the most of data around you. He also spoke about why he moved to Liverpool and how he set up his lab there.

4. Academic Neurology in the UK. Professor Compton spoke about changes to neurology training and the academic neurology pathways in particular.

The Future - the next research forum

This first research forum was an excellent first step in our aspirations to provide a platform for promoting research opportunities and improving dialogue between trainees, senior academics and clinicians. In the future, we aim to institute the research forum as an annual feature in the ABN conference. We intend to expand its presence, enabling more opportunities for informal enquiries and networking. It is envisaged that with time, senior clinicians and trainees will see it as a crucial resource for advertising and enquiring about research posts, as well as enhancing UK neurology research and training.

Box 1. The aims of the Research Forum

Help trainees enter, progress and be successful in academic neurology:
- Guidance on how and where to find funding.
- Advice on how to progress into PhD training — and onto intermediate and senior fellowships.
- Explain the skills needed to be an academic within the NHS.
- Advertise the opportunities available for trainees in the UK.
- Help trainees to find research mentors.

Help academics find trainees for research:
- Establish a careers fair so that academics can advertise positions.
- Create an environment where trainees and academics can talk informally.

The historical perspective

It used to be so easy to train in neurology. You trained in general medicine to get MRCP and did some neurology at registrar level (perhaps as a locum). You then completed a period of research (getting an MD or PhD), applied for registrar posts and later senior registrar posts. All of this eventually led to you becoming a consultant (Figure 1).

This changed in the mid-1990s with Calmanisation – by merging the registrar and senior registrar posts and giving the idea of programmed training (Figure 1). The place of research, as the necessary step most budding neurologists had to make, was unchanged. So easy. Or rather so easy to know what you had to do. It was obviously rather more difficult to actually do it, stay on course and defy the neurological version of natural selection.

Research was regarded as a 'good thing'. For the trainee it developed critical thinking; helped understanding of the scientific basis of neurology (or lack of it); developed sub-specialty interests and some areas of particular expertise. Discoveries may help patients too. To recognise this up to 1 year of research could count towards the 5 years of clinical training.

We then had Modernising Medical Careers. Everyone would ‘run-through’ their training...
and the SAC. Under the new curriculum this needs to be agreed by programme/deanery to undertake a registered higher degree. This an out-of-programme research (OOPR) to and have not done research you can apply for. If you have a training number in neurology the ST3+ trainee wants to do neurology (previously an SHO). MMC and a core medical trainee (CMT) who clinical fellow – a new position that came with previously a Specialist Registrar); an academic trainees: an ST3+ trainee in neurology (pre- territories that made it so easy are no longer applicable.

Current opportunities for research

Let us consider the opportunities for 3 different trainees: an ST3+ trainee in neurology (previously a Specialist Registrar); an academic clinical fellow – a new position that came with MMC and a core medical trainee (CMT) who wants to do neurology (previously an SHO).

The ST3+ trainee

If you have a training number in neurology and have not done research you can apply for an out-of-programme research (OOPR) to undertake a registered higher degree. This needs to be agreed by programme/deanery and the SAC. Under the new curriculum this will not count towards your clinical training, which, though competency based, takes a minimum of 4 years, and annual assessments need to be continued. Generally this will not be approved in your final year of training, so you will need to get moving to sort out an appropriate post/funding The Eastern Deanery has an innovative scheme where successful applicants to clinical ST3 posts are also offered funding for a higher degree. It is hoped that the majority of those doing research will do so from within training programmes, and it would be good if other deaneries could follow the Eastern Deanery lead. Trainees can expect that they will spend a minimum of 4 years in clinical training with an additional 2 or 3 years in research.

The Academic Clinical Fellow

Another grade for a committed academic is the Academic Clinical Fellow (ACF) and the Academic Clinical Lecturer (ACL). The standard expected to obtain a clinical CCST for these trainees is the same as for those neurologists who train in the conventional post. The expectation is that they will also require a minimum of 4 years of clinical training. The posts are within large academic departments which should make it easier to identify relevant research and for this research interest to run alongside the clinical training – useful if you wish to develop a lifelong academic interest. Trainees should expect the same duration of clinical and research training post ST3 as other trainees (ie 4 clinical plus 2 or 3 research).

The CMT trainee

A trainee leaving CMT will have the opportunity to apply for ST3 posts but may be tempted to go into research, particularly if they failed to get a post in neurology at their first attempt. This route has not been tested in the current post-MMC world. It would seem a shame if this were to be perceived as a standard route for neurology and we recreated a large pool of trainees in ‘limbo’ between ST2 and ST3. The temptation should be resisted by trainees and professors looking for research fellows.

Summary

Research is a good thing; it contributes to training in a number of important ways. However, it is not an essential part of the training needed to be a clinical neurologist. It is not mandatory and should only be done by those who want to do it – recognising that many of those attracted to neurology are likely to be keen to do research.

Useful further reading:

Consultant Neurologist

The post is a replacement post and is offered on a whole time basis, although applicants unable to work full time for personal reasons are invited to apply as are those wishing to job share. Applicants would need to be on the Specialist Register for Neurology or be within 6 months of their accreditation date at the time of the interview. The successful candidate would join our three other Neurology Consultants and two Consultants in Neurorehabilitation in providing a specialist inpatient and outpatient service for people with Neurological illnesses. The Neurology team also includes an experienced Associate Specialist, and several specialist nurses for disorders such as Multiple Sclerosis, Parkinson’s Disease, Stroke and Motor Neurone Disease. The department is committed to training, with two Neurology Specialty Registrars and a Stroke Medicine Specialty Trainee rotating from Oxford. There are strong academic and clinical links with Oxford. There is access to excellent Radiology and Neurophysiology. The postholder would be expected to undertake outpatient clinics and to take part in inpatient work including Stroke Thrombolysis. Inpatient facilities include a 16-bed Neurorehabilitation ward and a 28 bed Stroke Unit, and inpatient beds shared with Rheumatology on a General Medical Ward.

The appointment will be subject to the new terms and conditions of service for Consultants (England) 2003. The post attracts 10 Programmed Activities (PAs) per week (full time), with one PA spent in the regional neuroscience centre at the John Radcliffe Hospital for CME. Visits to the Department are welcomed.
2009

SEPTEMBER

Sympathopathies: Dysfunction of Sympathetic Function 2-4 September, 2009, Nepean, UK 080 2780 4160, E. mce@biochemistry.org 3rd Eiat Int. Educational Course Pharmacological Treatment of Epilepsy 6-13 September, 2009, Eilat, Israel 97 213 175 110, E. eladiat@harmonitc.org

2009 European Glial Cell meeting - 9th European Meeting 8-12 September, 2009, Paris, France E. info@ncore.org.uk BASI Biennial Conference 10-9 September, 2009, www.ncore.org.uk IDMC-7 International Myotonic Dystrophy Consortium 9-12 September, 2009, Würzburg, Germany E. sec@idmc.uni-wuerzburg.de Evolution of Brain, Behaviour & Intelligence 9-12 September, 2009, Cambridge, UK E. lucy@cmbi.bio.ru.nl Brain Tumors: Genetics, Diagnosis and Prognosis 10-12 September, 2009, Amsterdam, The Netherlands E. ronfisell@brainpin.org

25th Congress of the European Committee for Treatment and Research in MultIPLE Sclerosis 9-13 September, 2009, Düsseldorf, Germany Tel. +49 211 8711880, E. ectrims2009@uni-duesseldorf.de

15 September, 2009 Stress E. jemma.galbraith@stir.ac.uk T. 01786 467740, E. traceymole@wfnr.co.uk 14-18 September, 2009; Rhodes, Greece 2009 World Congress on Huntington’s Disease www.kenes.com/efns2009/ 13th Congress of the EFNS E. ahsmtgs@talley.com 10-13 September, 2009; Philadelphia, US Annual Scientific Meeting 14th International Headache Congress/51st www.heartrhythmcharity.org.uk Melanie Quinlan, E. ectrims2009@uni-duesseldorf.de Tel. +49 211 81 17880, E. info@euroglialcell.org 2009 European Glial Cell meeting - 9th www.staff.ncl.ac.uk/t.d.griffiths/ 16-18 September, 2009; Gatwick airport, E. help-OPT0907@cmetoronto.ca T. 48 713 425 833, 6-13 September, 2009; Eilat, Israel Pharmacological Treatment of Epilepsy 3rd Eilat Int. Educational Course www.britishepilepsy.co.uk Synaptopathies: Dysfunction of Synaptic 2009 www.britishepilepsy.co.uk Cleveland, Ohio T. 800 287 6711, E. admin@nccfs.org

2009 World Stem Cell Summit 21-23 September, 2009, Baltimore, USA T. 800 908 605 4003, E. rob@ngtopol.org

To list your event in this diary, email brief details to Rachael Hansford at rachael@acnr.co.uk by 8 October, 2009.
The second Practical Cognition Course

Newcastle • 8-9 October, 2009

Organised by Neurologists

Tim Griffiths (Newcastle University)

and

Chris Butler (Edinburgh University),

Sponsored by the Guarantors of Brain

A course for consultants and trainees who want to develop their practical expertise in cognitive assessment and relate this to clinically relevant neuroscience. Open to trainees and staff in neurology, psychiatry, clinical neuropsychology and rehabilitation medicine.

Details and programme

www.practicalcognition.com

or

Tel. 0191 222 8320

Email. l.e.batty@ncl.ac.uk

The International Symposium on ALS/MND is a unique annual event which brings together leading international researchers and health and social care professionals to present and debate key innovations in their respective fields. Taking place over three days, the Symposium features a scientific meeting and a clinical meeting.

Proposed biomedical sessions include:

- Proteinopathies
- Protein regulation and degradation
- Motor neuron biology
- Stem cell biology
- Genetics
- Cell biology and pathology
- Axonal transport and maintenance
- Emerging disease models
- Neuro inflammation

Proposed clinical sessions include:

- Palliative care
- Translating evidence into practice
- Spiritual care
- Multidisciplinary care management
- Cognitive change
- Quality of life/decision making
- Exercise and metabolism
- Respiratory management
- Caregiver support
- Clinical electrophysiology and imaging

For more information and to register, contact the Conference Team by annual_symposium@mdassociation.org or register online at: www.mdassociation.org/symposium

Organised by the MND Association in co-operation with the International Alliance of ALS/MND Associations.
A s appears now to be the norm, the main conference was preceded by a one day Imaging Consortium. This is of mixed benefit, while the concentration of imaging talks benefits those researchers based principally in this field, there is repetition of the same material within presentations within the main conference.

Several groups presented updated results relating to molecular neuroimaging in Alzheimer’s disease (AD). One of the interesting aspects of the work described by Pi B and co-workers from Pittsburgh using Pittsburgh Compound B (PiB) was the longitudinal study involving amyloid imaging of patients with mild cognitive impairment (MCI); previous work has shown that around 50% of patients with MCI progress to AD within three years while there is a also a significant proportion whose symptoms remain static or even improve. Analysis of the PiB-PET data reveals that 50%-60% of "PiB-positive" MCI patients converted to AD over two years, whereas over the same period none of PiB-negative MCI cases progressed to AD and three out of ten PiB-negative cases reverted to normal (see also related paper in the May 2009 edition of Annals of Neurology). PiB-positivity was found to be highly correlated with reduced levels of Aβ42 in the CSF.These data were echoed by those of Chris Rowe from Melbourne, who presented evidence indicating that the presence of PiB-positivity in MCI patients was 87% predictive of progression to AD.

In addition to the PiB-related talks, mention was made of the 18F-related ligands with amyloid-labelling capability. They benefit from a longer half-life than the 11C-PiB, at present the usage of the latter is limited by its short half-life and so is essentially restricted to those centres with an in-house cyclotron. By comparison the 18F-fluids have the potential for widespread usage.

Cliff Jack of the Mayo Clinic presented a comparison of serial PiB and MRI data in controls, MCI and AD patients over a one year test period. There was little difference between the PiB and MRI data in MCI and AD patient groups in terms of the change in degree of PiB labelling whereas there was a significant group difference with regard to rate of ventricular expansion (used as a measure of change in whole brain volume). Change in ventricular size, and not in PiB labelling, correlated with decline in cognitive and clinical state. The dissociation between the two sets of imaging data may provide an insight into the differing pathological processes in AD; in line with other investigators, it is proposed that deposition of amyloid occurs from a very early stage of the disease, with very little change in the rate of further deposition once an individual become symptomatic, whereas neurodegeneration (and associated brain parenchymal loss) is a manifestation of later stages of AD and parallels the cognitive decline. These findings have important implications for the use of these complementary techniques in tracking the disease at different stages.

Finally on the imaging front, Reisa Sperling and colleagues at Harvard demonstrated in cognitively normal older individuals that extracellular amyloid deposition as seen on PiB imaging is associated with a disruption of the normal pattern of activity within the “default resting network” of brain regions thought to be involved in successful memory encoding and retrieval, including the precuneus and posterior cingulated cortex, as seen on fMRI. These early data suggest that amyloid deposition is related to dysfunction of brain regions subserving memory processes. However, it remains to be seen whether the relationship is causal, and these observations do not provide any clear explanation for the role of tau-related tangle pathology within the AD process (a criticism common to all PiB-based work).

Away from neuroimaging, Niklas Mattsson from Gothenburg presented data from a large scale longitudinal study of CSF biomarkers in MCI. A two year follow-up study of 750 MCI patients revealed that those patients converting to AD had lower CSF levels of Aβ42 and higher levels of tau and phosphorylated tau than non-converters with a positive predictive value of 62% and negative predictive value of 88%. This follows on from the publication by Visser and colleagues concerning CSF profiles in patients with memory impairment who are at risk of progressing to AD which was accompanied by the challenging editorial which raised the issue of lumbar puncture as a potential routine investigation for patients presenting with memory impairment.

By comparison with ICAD 2008, the news on potential new drugs was relatively muted; to a large extent this was due to the fact that there was no major presentation detailing Phase II or Phase III study results. Following on from the presentation of Phase II data last year, the Phase III study of bapineuzumab (the monoclonal antibody directed against the N-terminus of Aβ42) is now in progress and provisional results will not be available until 2012. Away from AD immunotherapy, there is interest in the antihistamine drug Dimebon, whose proponents suggest that it may have neuroprotective qualities related to the enhancement of mitochondrial function. While the promise of multiple future drugs with potential disease-modifying capability is undoubtedly exciting, several speakers rightly drew attention to potential difficulties. For instance, there is concern that the majority of drugs currently undergoing trial for AD are directed at “upstream” targets within the AD pathological process (such as β-secretase inhibitors) and as a result may have limited efficacy due to the lack of effect on the downstream processes that ultimately lead to neuronal dysfunction and death. Additionally, while there was a general consensus that drugs of this kind were likely to be of greatest benefit when applied early during the disease process, this will be problematic not least due to a) the difficulty of identifying patients in the earliest (effectively presymptomatic) stages of AD and b) the need for very large scale and prolonged trials to detect treatment effect of drugs applied at early stages of disease.

Finally, from a UK perspective it was gratifying to witness the presentation of a Lifetime Achievement Award to Professor Martin Rossor of the Dementia Research Centre, London. Professor Rossor’s work in the field of dementia now spans nearly a quarter of a century and takes in such notable achievements as the identification of the first pathogenic mutations in familial AD. The timing of the award is particularly appropriate given the increasing international emphasis on the management of dementia, exemplified nationally by the introduction of the National Dementia Strategy.

REFERENCES

Welcome to the

19th World Congress of Neurology

October 24th-30th, 2009
Bangkok, Thailand

“Innovation in Neurology”

www.wcn2009bangkok.com
New Developments in Clinical Trials in Neuroscience & Psychiatry

Conference details: 10 June, 2009; Edinburgh, UK. Reviewed by: Professor Peter Sandercock, Edinburgh, UK.

Translational neuroscience offers enormous potential, but has yet to deliver real benefits for patients with the disorders of the nervous system that cause such a large burden of disability: stroke, dementia, neurodegenerative diseases and the major psychiatric disorders. This meeting sought to take a step back to examine the strengths and weaknesses of translational research in the field, to identify key barriers and potential solutions. Gordon Murray, Professor of Medical Statistics at The University of Edinburgh gave the opening lecture which set the scene. He drew a sharp contrast between cardiology and neuroscience. In cardiology the availability of useful and reliable surrogate markers (coronary artery patency, left ventricular function, blood pressure) had underpinned the development of large-scale trials able to detect effects on major clinical outcomes. These trials then established the benefits of aspirin, beta blockers, angiotensin converting enzyme inhibitors and thrombolytics, just to name a few. By contrast, in acute stroke, thrombolysis had skipped the translational pathway and was developed in stroke ‘on the back of’ experience in cardiology Neuroprotection, which had shown so much promise in animals, has yet to show benefits in man. Very presciently, Professor Murray outlined the themes that many of the speakers would return to during the afternoon. The most important of these was the need for careful methodological development of better surrogate markers, both of the underlying biological processes, but also of the clinical outcomes those processes were mostly likely to influence. Professor Joanna Wardlaw then went on to outline the rather chequered history of imaging as a surrogate outcome in acute stroke research. One illustrative example which she drew on, was the use of advanced neuroimaging to outline cerebral tissue that was ischaemic but potentially rescueable by therapy. Whilst it is relatively straightforward to produce attractive colour-rendered pictures of cerebral perfusion it has become clear that the use of different measurement algorithms can produce radically different results. In brief, there is a need for much greater methodological rigour in the development and application of such techniques and the research community needs to reach consensus on an optimal and standardised approach. Several of the themes of her talk are reflected in a recent editorial in the journal ‘Stroke’.

Next on the podium was Professor Stephen Lawrie, Professor of Psychiatry and Neuroimaging at The University of Edinburgh, who outlined the promises and challenges of neuroimaging in major psychiatric disorders. His talk ran along the theme that although there were undoubtedly structural and functional changes in the brain in people at risk of, or with established psychotic disorders, there were many challenges in measuring these changes precisely or understanding their underlying biological substrate. Multicentre imaging studies offer greater statistical power to help detect and clarify the nature of the subtle structural and functional changes that occur in the brain. Neurogrid, Neurpsychgrid and the Scotland-wide SINAPSE collaboration certainly seem to be forging ahead, developing the technological advances needed that will facilitate multicentre imaging studies to help take the field further forward.

Dr Roger Staff from the University of Aberdeen showed results of work in progress on the use of SPECT and PET imaging in dementia and Alzheimer’s disease. The techniques do seem to show promise as useful surrogate outcomes and the promising results in a small phase II trial are now being tested on a larger scale in a phase III trial of a therapeutic agent for this major group of diseases.

Dr Carl Counsell moved away from imaging to consider how to improve the clinical assessment of outcome in Parkinson’s Disease and neurodegenerative disorders. His talk was a reminder that while biomarkers (imaging, molecular biology and genetic) have some role in the assessment of new treatments for Parkinson’s Disease and in neurodegeneration, in parallel with those developments, the science of clinical measurement needs to be applied to assess the impact of disease on the patient and their life. He outlined the path forward that developments in clinimetrics would need to take to achieve this goal.

This exciting and fruitful symposium was rounded off by a lecture from Dr Walter Koroshetz, Deputy Director of the National Institute of Neurologic Disorders and Stroke, at the National Institutes of Health, Bethesda, USA. He outlined themes that were all too familiar to the audience: the difficulties of moving successfully from identifying a potential therapeutic target, selecting an agent that might act on that target and then establishing its effects in animals and subsequently in humans. In parallel with the challenges of scientific development of agents, there is also a difficulty – on both sides of the Atlantic – of developing the careers of the next generation of clinical triallists. They will need stamina to overcome the bureaucratic and organisational hurdles to clinical trials and combine it with the scientific vision and charisma that are needed to lead the large collaborative groups to undertake multicentre international clinical trials. He ended on a note of optimism. Whilst these problems are significant, they are all potentially soluble and we must work on them one step at a time.

This well-attended meeting was supported by the following academic institutions, research groups and NHS research networks: The University of Edinburgh Centre for Clinical Brain Sciences, Edinburgh Neuroscience, the Edinburgh Clinical Trials Unit Collaboration, the Scottish Collaboration of Trialists, the Scottish disease-specific research networks in stroke, mental health and neuro-degenerative disorders, the SFC Brain Imaging Centre and a grant from The Royal Society of Edinburgh. The lectures are available on-line at http://www.ccbs.ed.ac.uk/bcm.html.
The conference is aimed at Medical Doctors, Psychologists, Nurses, Physiotherapists, OTs, Speech & Language Therapists, Researchers, Academics, Social Workers and all who work with brain injured people.

Speakers include:
- Dr Sam Cooper-Evans, Consultant Clinical Psychologist, Brain Injury Centre, St Andrew's Healthcare, Northampton
 Self-esteem as a predictor of psychological distress after brain injury - (to be confirmed)
- Rudi Coetzter, North Wales Brain Injury Services
 Community based rehabilitation for identity change after brain injury
- Jane Bache & Gary Derwent, Royal Hospital for Neurodisability, Putney
 Computer-based leisure in profound neuro-disability
- Dr Dave Sharp, Consultant Neurologist, Hammersmith Hospital, London
 The frontal lobes and traumatic brain injury – structural and functional imaging studies of connectivity
- Dr Penelope Talleli, Consultant Neurologist, Homerton Hospital, London
 Plasticity and its impact on rehabilitation

Another three speakers to be confirmed

For further details and application enquiries please contact:
Nick Hall, Conference Organiser
Email: nicholas.hall@homerton.nhs.uk, Tel: 020 8510 7970

The Neurology of Old Age

Thursday 18 February 2010
Joint conference with the British Geriatrics Society

Medical clerking often omits the Central Nervous System or describes it in a cursory way. Many non-specialists feel rather vulnerable when assessing a complex elderly person with poor mobility, falls, incontinence or cognitive impairment.

The aims of this conference are to improve diagnostic acumen when assessing old people with neurological disorders, to know whom to refer and when and to be aware which investigations have therapeutic payoff and which are inappropriate or unnecessary.

Target audience: Hospital doctors especially neurologists, geriatricians, acute physicians, rehabilitation specialists, physiotherapists and speech and language therapists.

Programme and booking forms are available on-line at www.rcplondon.ac.uk/conferences or from:
Conference Department, Royal College of Physicians
Tel: 020 7935 1174 Ext. 300/252/436
Fax: 020 7224 0719
Email: conferences@rcplondon.ac.uk

The UCL Institute of Neurology promotes teaching and research of the highest quality in neurology and the neurosciences

This series will be given on Wednesday evenings during the Autumn term 2009; the first lecture will commence at 5.15pm. The venue will be the Lecture Theatre, Basement of 33 Queen Square (unless stated otherwise), National Hospital for Neurology & Neurosurgery, Queen Square, London WC1.

These lectures are open to anyone practicing and researching in the field. No charge is made for attendance.

Wednesdays:
14th October – 2nd December 2009
inclusive
The Birmingham Neuro-Ophthalmology Course

Wednesday 11th November 2009
Postgraduate Medical Centre, City Hospital, Birmingham, West Midlands B18 7QH

The Birmingham Neuro-Ophthalmology Course is a four year rolling programme of one day lectures aiming to teach the principles of diagnosis and management of disorders of the visual pathway, eye movements, and pupils. The Michael Sanders lecture enables an invited speaker to review a topic of his or her choice in greater depth.

Target Audience
Ophthalmologists, Neurologists, and Orthoptists

This Year’s Topic: Optic Nerve Disease

Lectures to include
- Imaging of the anterior visual pathway
- The anomalous optic disc
- Papilloedema
- Ischaemic optic neuropathies
- Optic neuritis
- Optic nerve tumours
- Inherited optic neuropathies
- The 4th Michael Sanders Lecture, to be given by Gordon Plant

Invited Speakers:
- Swarup Chavda – University Hospital Birmingham
- Philip Griffiths – Royal Victoria Infirmary Newcastle
- Simon Hickman – The Royal Hallamshire Hospital
- Paul Riordan-Eva – King’s College Hospital
- David Taylor – London

Course Fees
- Medical £200
- Orthoptists £150
- Includes lunch and morning and afternoon coffee/tea

Further Information and Applications
- By post, telephone or email to the Conference Secretary, Mrs Hilary Hopkins
- Please note: space is limited to 120 delegates

The British Neuropsychiatry Association

23rd Annual General Meeting
10/11/12 February 2010

The British Neuropsychiatry Association
23rd Annual General Meeting
11/12 February 2010
With a joint meeting, 10 February, with the Section of Neuropsychiatry, RCPsych
Venue: The Institute of Child Health, Guilford St, London

Topics to include:
- Memory (SoN/BNPA)
- Encephalopathy and delirium
- Head Injury
- Neuropsychiatry and the Self

For outline programme and registration form visit: www.bnpa.org.uk

For details of exhibition/sponsorship opportunities, contact: Jackie Ashmenall on Phone/Fax: 020 8878 0573/Phone: 0560 1141307 Email: admin@bnpa.org.uk or jashmenall@yahoo.com

European Charcot Foundation Symposium

November 12, 13 and 14, 2009, Lisbon, Portugal

15th European Charcot Foundation Lecture
Prof. M. Clanet
‘Trends in Treatment Strategies’

Sessions on:
- Pathology, pathophysiology and clinical application of new concepts
- Options, challenges and risks of new drugs
- Response measurement and how to use the tools: MRI, CSF, Biomarkers, Pharmacogenomics
- Atypical syndromes
- The future

For detailed information and registration visit our website www.charcot-ms.eu
This year’s International Epilepsy Congress was a very special one as the International League against Epilepsy (ILAE) is celebrating its first 100 years. The ILAE meeting was held on 30 August 1909 at a meeting in Budapest, the same city where the organisation was founded. The League is the oldest international subspecialist organisation in the field of neurology and one of the oldest in medicine.

During the Presidential Symposium Peter Wolf from Denmark, President of the League, expressed his hopes for the future. “We expect that ILAE and IBE together will make progress toward a world where nobody needs to suffer from epilepsy or its consequences because they don’t have access to the existing diagnostic and therapeutic possibilities.” Furthermore, he was confident that both diagnostics and therapies, pharmacological and other, will become still more effective in the future. “If we achieve remission in 90% of patients instead of the current 70%, we will have achieved a lot.”

Promising future

One of the new drugs which will hopefully help to achieve higher remission rates in the future is lacosamide. It has recently been approved in the US and EU for the adjunctive treatment of partial-onset seizures in adults. Lacosamide appears to selectively enhance slow inactivation of voltage-gated sodium channels without affecting fast inactivation. Preliminary in vitro studies suggest a potential interaction of lacosamide with collapsin response mediator protein 2 (CRMP-2), a protein involved in neuronal differentiation, polarisation and neurotrophin-induced axonal outgrowth. Lacosamide has quite a favourable pharmacokinetic profile. It is rapidly and completely absorbed (bioavailability of 100%), has a half-life of 13 hours permitting a twice daily dosing schedule and a low protein binding (under 15%).

The safety and efficacy of this new drug have been evaluated in three well-controlled Phase II/III clinical trials. Individual and pooled data from these trials were used to evaluate lacosamide efficacy across the 200 – 600mg/day dose range studied. The pooled analysis, presented by Elinor Ben-Menachem (Goteborg/Sweden) showed a reduction of the median seizure frequency by more than 40%. This is particularly remarkable considering that 77% of the patients included had tried four or more lifetime antiepileptic drugs before entering the trial. A further advantage of lacosamide is that its efficacy seems to be independent of the concomitant antiepileptic treatment. Lacosamide was generally well tolerated, with dizziness, nausea, headache and diplopia being the most common side effects.

REFERENCES

Focus on concordance in epilepsy

A “patient friendly” option

- Designed for concordance
- Once-a-day dose
- Simple evening dose
- Easy to swallow minitablets
- High patient acceptability
- Concordance reduces seizure frequency

Episenta® Prolonged Release Sodium Valproate

- Designed for concordance
- Once-a-day dose
- Simple evening dose
- Easy to swallow minitablets
- High patient acceptability
- Concordance reduces seizure frequency

ABREVIATED PRESCRIBING INFORMATION
See Full SmPC for Details. Episenta 150mg & 300mg capsules and Episenta 500mg & 1000mg sachets contain prolonged release sodium valproate minitablets.

Indication: The treatment of all forms of epilepsy. **Dose:** Give in 1 - 2 single doses. **Monotherapy:** Adults: Start at 600mg daily increasing by 150-300mg at three day intervals to a max of 2500mg/day until control is achieved. **Children under 20kg:** 20mg/kg bw/day; max 40mg/kg/day. **Patients with renal insufficiency:** May require decreased dose.

Combined Therapy: Dosage adjustments may be required. **Administration:** Swallow without chewing the prolonged-release minitablets. **Contraindications:** Liver disease. Personal or family history of hepatic problems. Porphyria. Hypersensitivity to valproate. **Precautions:** Suicidal ideation reported. The onset of an acute illness is an indication of the early stages of hepatic failure and requires immediate withdrawal of the drug. Routinely measure liver function in those at risk before and during the first six months of therapy. Discontinue if signs of liver damage occur or if serum amylase levels are elevated or if spontaneous bruising or bleeding occurs. Review patients who have issues with pancreatitis, renal insufficiency, SLE, hyperammonaemia, weight gain, diabetes or blood tests. Withdrawal of sodium valproate should be gradual. **Interactions, Pregnancy and Lactation:** See full SPC. **Undesirable Effects:** See full SPC. Further information & MA Holder: Beacon Pharmaceuticals Ltd. 85 High St., TN1 1YG UK. **Presentations & Prices:** POM. Episenta 150mg capsule x 100 PL 18157/0021, Episenta 300mg capsule x 100 PL 18157/0022, Episenta 500mg sachet x 100 PL 18157/0023, Episenta 1000mg sachet x 100 PL 18157/0024 have the following NHS prices: £5.70, £10.90, £18.00 & £35.00 respectively. **Date of text:** Oct 2008. Advert prepared June 2009

Further information from Beacon
85 High St, Tunbridge Wells, TN1 1YG.
Tel: 01892 600930

Adverse events should be reported. Reporting forms and information can be found at www.yellowcard.gov.uk. Adverse events should also be reported to Beacon Tel: 01892-506958
The 13th International Congress of Parkinson’s Disease and Movement Disorders was held on June 7th-11th 2009 at Le Palais des Congrès in Paris. Despite overcast Parisian skies, the event was an overwhelming success with more than 4,000 participants from 39 countries. The 5-day event comprised various plenaries, parallel sessions, and a poster workshop as well as lively debates on some controversies in movement disorders. A variety of poster sessions attracted impressive participation from various groups around the world. This year’s special theme was Anatomy, physiology and pathology of the basal ganglia.

Some of the many highlights included Professor Stan Fahn’s plenary that provided a thorough overview of the various therapeutic agents currently used in the treatment of early Parkinson’s disease (PD) and also highlighted certain areas such as neuroprotective strategies. Evidence from therapeutic trials on monoamine oxidase B inhibitors (MAO-B) are supportive in slowing down disease progression (DATATOP, TEMPO, PRESTO, ADACIO studies) and delaying onset to freezing of gait (BLIND-DATE study). Other important aspects of therapeutic intervention include the use of dopamine agonists that delay the need to use levodopa but do not prevent dyskinesia when used in combination with levodopa. The important potential side-effects of dopamine agonists such as impulse control disorders, somnolence and peripheral oedema were mentioned. There was also a brief mention of current trials involving potential neuroprotective agents such as the Q3E study (co-enzyme Q10) and creatine. Professor Fahn reiterated the need to always individualise treatment.

The management of motor complications following medical and surgical therapy was discussed by another group of international specialists. Professor Heinz Reichmann highlighted the long-term effects of levodopa that can occur as soon as 6 months after commencement. Motor fluctuations are thought to be due to fluctuations in dopamine levels and ‘downstream changes’ within medium sized spiny striatal neurons. In the ELLDOPA study 17% of participants receiving levodopa experienced mild dyskinesia and 30% experienced wearing off approximately 6 months after commencing therapy. The panel also discussed the use of amantadine and its anti-dyskinetic effect that may be useful but decreases in efficacy over time. The use of surgical therapy, specifically deep brain stimulation (DBS), was also discussed by Dr Patricia Limousin-Dowsey and it was agreed that subthalamic nucleus (STN) stimulation can greatly improve motor symptoms in the ‘off’ phase such as tremor and dyskinesia. Importantly, STN stimulation is cost effective. Limited information is known about the effect of DBS on non-motor symptoms but some have reported benefits for hyperhidrosis, hyposmia, sleep and pain. Common adverse effects associated with DBS include weight gain and speech impairment. Other potential disabling side-effects include eyelid apraxia, dyskinesia and psychiatric changes (including suicidal ideation). Though STN stimulation is one of the most commonly performed type of DBS for PD, potential therapeutic benefits of globus pallidus interna (GPI) and thalamic (ventralis intermedius nucleus) stimulation were also discussed. The role of lesion therapy (e.g. unilateral pallidotomy, gamma knife thalamotomy) was also briefly discussed. Key points to be considered as selection criteria for surgical therapy include the patient’s general health, disability, cognition, speech, swallowing and their pre-operative expectations.

Dr Anette Schrag and Professor David Burn provided insights into the disease-related psychiatric and behavioural abnormalities of PD, as well as the assessment and management of cognitive impairment in Parkinson’s disease dementia (PDD). Among the useful cognitive screening tools currently utilised are the Montreal Cognitive Assessment (MoCA) and the Addenbrooke’s Cognitive Examination – Revised (ACE-R). Professor Burn briefly touched on the use of antipsychotics in PDD and the potential benefit of cholinesterase inhibitors such as rivastigmine, donepezil and galantamine as well as glutamate antagonist, memantine, that is currently being studied by various groups. Emphasis on the importance of non-pharmacological approaches in the management of cognitive impairment in PD includes rehabilitation (e.g. auditory cueing and gait retraining), exercise and potential for ‘medical foods’.

The topic of new therapeutics in PD was explored by Professor Warren Olanow and Professor Werner Poewe. The lack of significant results from the STRIDE-PD study examining the use of Stalevo to decrease pulsatile fluctuations of levodopa and decrease motor complications was discussed. It was felt that the significantly different dopaminergic load in the Stalevo versus levodopa group may be a factor contributing to the results. Thankfully, more promising trials on symptomatic and neuroprotective strategies are underway. Among the agents being trialed are safinamide, pargylinopronox, aminophloe, nitisinone, creatine, co-enzyme Q10, green tea polyphenol, adenosine receptor antagonist, PYM5028, inosine, and rilampidine.

The Presidential Lectures on day 3 started with a thought-provoking historical lecture by Professor Christopher Goetz on ‘Jean-Martin Charcot and movement disorders’. This was followed up by the junior award lecture by Dr Helen Ling from the United Kingdom. Dr Ling reported diagnostic accuracy in pathological-confirmed corticobasal degeneration (CBD). The diagnostic accuracy of CBD presenting to movement disorder specialists was found to be much lower compared to progressive supranuclear palsy and multiple system atrophy. Dr Carlos Juri from Spain presented on the progression of MPTP induced Parkinsonism in monkeys via a multi-ligand PET study. Different hypometabolic patterns were illustrated and compared to PET findings in PD patients that revealed some contrary results and which may provide useful information in the development of putative neuroprotective strategies. The Presidential Lecture session was finished by the C David Marsden Lecture presented by Professor Richard Morimoto from the United States of America. His thought-provoking lecture was on the stress of mis-folded proteins in ageing neurodegenerative disease. Among the science being unravelled by Professor Morimoto and his team are the regulation of the heat shock stress response via heat shock proteins and molecular chaperones.

There was also a special session on the challenge of PD management in Africa. The difficulties in diagnosis and management of PD in a third world environment were discussed by Dr Richard Walker, Dr Njideka Okubadejo and Dr James Bower. Impressive results from drug therapy were demonstrated in patients who had been treatment naive for years and only reinforced the need to improve provision of medication as a basic necessity to the population. Auditory cueing and rehabilitation also produced stark benefits in mobility of patients and once again, reminded us of the importance of non-pharmacological treatment.

The Wednesday night ‘Video Olympics’ was an entertaining and educational floor for interesting neurological cases and diagnostic conundrums to be presented to the expert panel. Among the cases presented were galac-
tosialidosis, PARK9 mutation (Kufor-Rakeb syndrome), Bartonella henselae (i.e. ‘cat scratch disease’), aceruloplasminaemia, haemorrhagic pontine gnathostomiasis, Niemann-Pick Type C, creatine transporter deficiency congenital myotonia and adult onset Alexander disease with glial fibrillary acidic protein mutation. Not exactly your typical weekly neurology meeting cases? The panel made valiant attempts to categorise, localise and diagnose, although several of the more esoteric diagnoses defied one and all.

The congress finale comprised a lively debate on controversies in movement disorders. The hot topics discussed were ‘The PPN is a promising target for treatment-resistant gait disorders in Parkinson’s disease’, ‘Do cholinesterase inhibitors make a meaningful difference in treating PDD’, ‘Lewy bodies in grafted dopaminergic cells: Do they tell us anything about the pathogenesis of and the promise of cell replacement therapies in PD?’ and ‘Transcranial sonography: A useful diagnostic tool for movement disorders?’. As with most controversies, only time (and more research) will help us define the right from wrong.

Participants were given the opportunity to attend a variety of educational sessions held as parallel sessions throughout the duration of the congress. These sessions were chaired by experts in the field and robust discussion was always encouraged. I am sure that all participants will be looking forward to next year’s congress, to be held on 13th-17th June in Buenos Aires, Argentina.

WCN 2009 World-Class Speakers, Compelling Issues

By: Dr Naraporn Prayoonwiwat, MD, local chairperson of the WCN 2009 Scientific Program.

The scientific programs for the upcoming WCN 2009 are central to the congress being a success. Our aim is to deliver great insights and tangible value to all attendees. I would like to share with you some highlights of what we have planned for the scientific program of WCN 2009, which takes place October 24-30 in Bangkok.

The scientific program this year has the theme, ‘Innovation in Neurology’. With innovation and reference to the latest research firmly in mind, WCN 2009 will analyse the latest developments in stroke, epilepsy, neurogenetics, multiple sclerosis, dementia, movement disorders, headache and pain.

The organising committee is proud to announce that Nobel Laureate, Prof Stanley Prusiner whose discovery of an extraordinary infectious protein called ‘prions’ will address the latest developments in a session on PRION disease.

The urgent requirement to bring good neurological care to needy people in developing countries will be addressed by Prof Johan Aarli, the President of the World Federation of Neurology. Other advanced information on multiple sclerosis, epilepsy, neurogenetics, neuroimaging, behavioural neurology, headache and pain will be presented by international experts.

Prof Vladimir Hachinski, the WFN Vice President and globally respected authority in the modern debate on stroke, will discuss the global agenda on stroke. This devastating condition affects a large proportion of the world’s population, particularly in Asian countries where access to prompt treatment is still quite limited.

Of course, we will address controversial issues. Theories, research and results from the latest research in neurology will be brought out into the open. For example, whether good old aspirin still holds the reputation of being a simple tool for stroke prevention will be debated by Prof Peter Sandercock and Prof Louis Caplan.

The conflicting opinions on whether Devic disease, a common demyelinating disease in the East, is actually the same as its western counterpart, multiple sclerosis, will be investigated by Prof Alastair Compston and Prof Vanda Lennon.

A decision to do or not to do a genetic workup for epileptic patients should become clearer with the discussions provided by Prof Samuel Berkovic and Prof Michael Johnson.

Also, could a diagnosis of predementia, or mild cognitive impairment, be as simple as checking for a biomarker? Should neuropsychometric testing be more reliable? These topics will be analysed by Prof Serge Gautier and Prof Rachelle Doody.

Other compelling areas of neurology will be covered as well. In addition to the daily main themes on stroke, multiple sclerosis, epilepsy, neurodegenerative diseases, headache and pain, there will be parallel sessions on infections, imagings, neurosonology, stem cells, movement disorders, genetic diseases, neuropathy, myopathies and more. The relationship between neurology and the creative arts and artists, ethics and palliative care (e.g. in motor neuron disease) will also be explored at the WCN 2009.

Delegates will have the opportunity to contribute to the WCN 2009 scientific program through abstracts based on their accomplished research. In addition, there will be many platform presentations as well as abundant space for poster presentations.

There will be time for smiles as well as learning. Teams of neurologists can have fun as well as gain knowledge by participating in a WCN ‘favourite’, the third Tournament of the Minds. We will arrange a special prize for the tournament’s winning team.

Would you like to write a short report for ACNR? If so, please contact Rachael@acnr.co.uk or call Rachael on 01747 860168 for more information.
AUTOIMMUNITY: mimicking one’s self

Hartmut Wekerle’s team, from the Max Planck Institute of Neurobiology, Martinsried, are responsible for some seriously important immunological observations over the years. And this is another one....

Firstly, remember what you learnt about one possible cause of autoimmune disease at college...that an invading bacteria looks very like an ordinary part of “self” so that the appropriate immune response against the bug mistakenly leads to auto-damage. Hence “molecular mimicry”.

Now, consider this Wekerle’s team have been playing around with a mouse whose entire T cell repertoire consists of one response: to the myelin peptide MOG. In theory, it should only respond to MOG. Through the mechanism of molecular mimicry from an invading bug, it can be induced to get EAE. But, when the mouse is further transgenic not to be able to produce MOG, you would expect that it could not get EAE, because there is no MOG target to get inflamed about. However, these animals continued to develop EAE spontaneously. After a lot of fancy purification, it turns out that T cells from these animals were targeted at two neurofilament proteins. One, NF-M, turns out to contain a sequence of 7 amino acids that is nearly identical to a sequence in the core of the MOG molecule. So one class of T cells, that should only respond to MOG, were also targeting neurofilaments. Wekerle’s team have coined this “self-mimicry”.

The main thing you need to know to understand the significance of all of this is that the strain of mice used (C57BL/6) is notoriously resistant to most attempts to induce autoimmunity. So Wekerle speculates that the mouse’s particular susceptibility to MOG-induced EAE is because one autoimmune response (against MOG) actually ends up targeting two self-antigens: a two-pronged attack. The other implication (which isn’t mentioned and I thought up all myself) is that an immune attack against myelin can also, of itself, induce an immune attack against neurons (for NF-M is a neuronal antigen). Hence perhaps, an explanation for the attrition of nerves in the predominantly demyelinating disease of multiple sclerosis.

It is hard to think of a clinical application for this discovery. But I think there is a good case for us to include this paper in ACNR because of that “wow” factor... just when we thought we knew everything, something quite unexpected comes along. Whod’ have thought.... ~ A JC

COGNITIVE Dyspraxia feel the quality

Qualitative research can be a difficult concept to digest to those of us reared on the milk of the double-blind crossover trial paradigm. The lack of a p-value at the end of the results section leaves us feeling adrift and disoriented. Certain concepts do not lend themselves particularly well to the concept of quantitative research, however. A literature search for articles on “dyspraxia” will throw up a bewildering array of concepts pertaining to speech, motor control and cortical mapping. All disciplines working within the sphere of neurological rehabilitation would, no doubt, vary in their definitions of the condition. Given rehabilitation is based around addressing the problems that the patient sees as important rather than treating abstract diagnoses, determining the particular impact of dyspraxia on an individual’s daily life is an important part of planning and providing appropriate rehabilitation strategies to them.

The interviews revealed a common theme of struggle. This struggle was perceived as being both “within” (pacing oneself, thought processes, control) and “without” (using tools, communicating, relationships). The interviews revealed self-directed compensatory and functional approaches employed in order to overcome the difficulties that were being experienced. Compensatory approaches included environmental adaptations, such as the use of Velcro shoes while functional strategies included breaking activities down into their component parts. These approaches mirror those employed in the rehabilitation setting.

As is often the case with qualitative research, there isn’t an obvious “take home message”, but what this study does demonstrate is the need to adopt an individualised approach and to work with patients to find strategies that they can use in overcoming the difficulties arising from dyspraxia. It is a shame that some of the concerns and ideas generated in such research could not be taken forward by qualitative methodologists. ~ LB

MEMORY: Adult hippocampal neurogenesis - a phenomena looking for a function?

The role of adult neurogenesis in the dentate gyrus of the hippocampus is an area of intense debate. The fact that new neurons are born in this area of the mature CNS is not in doubt, but the problem is what do these cells do once they have matured and been incorporated into new circuits? A couple of papers have added to the literature in this area. The first by Kim et al investigated the consequences of preventing the death of these cells using a Bax-KO mouse, Bax being a pro-apoptotic gene (such that not having it would cause neurons newly born not to die by programmed cell death). Using this model (which of course assumes that most new neurons born in the dentate gyrus are lost through apoptosis), they found that there was a readjustment of synaptic connections with impairments in both electrophysiological and behavioural hippocampal function. In other words if a population of new born neurons in the hippocampus are not removed by natural cell death, they clog up the system and cause deficits which behaviourally involve memory acquisition and consolidation. This is consistent with the study of Trouche et al who followed the fate of newly dividing (BrdU positive) neurons in terms of their integration and functional abilities. In this study the authors used the activity-dependent protein Zif268 in combination with high resolution confocal imaging and co-labelling with BrdU and the neuronal marker NeuN, to follow the fate of cells in the context of controlled behaviours. They found that these newly born neurons are recruited into neuronal networks involved with spatial memory and that once incorporated are involved in the updating and strengthening of that memory and thus contribute in part to its durability. Thus these cells are recruited under experience specific conditions and store those conditions as part of their contribution to the spatial memory of the hippocampus. Quite how this information is then used, updated and modified in the long term is not clear but this and the other study of Kim et al does highlight that these new neurons do make a significant contribution to some aspects of hippocampal memory.

In the learning tasks, themselves, the DAI subjects (predictably) performed more poorly than controls under the EF conditions. The authors suggest that the neuroanatomical activation patterns in each group imply that this is due to reduced metabolism in the precuneus and posterior cingulated gyrus for the DAI group. The activation of the parietal lobes seen in this group may represent compensatory activity or disinhibition. Unfortunately, insufficient consideration is given to the dynamic processes of recovery and no clear relationship is sought between the time passed since the brain injury and learning patterns. The learning process, itself, is difficult to delineate, given that individuals tend to acquire information in unique ways. A further study looking at how activity patterns change over time in this patient group may be more useful in terms of the potential to translate to clinical practice.

MEMORY: How did you remember that?

People are sometimes disappointed to realise that the rehabilitation of memory impairments can often involve nothing more complicated than a whiteboard, diary and a paper system. Although it would be easy to imagine that electronic ‘brain training’ computer games could help restore cognitive function following a brain injury there is little evidence that such strategies actually work. In terms of active therapeutic intervention, the concept of ‘errorless learning’ (EL) is becoming more widespread. This suggests that for patients with memory impairments occurring in the context of brain injury, new skills and information is best learnt in a didactic manner rather than by trial-and-error. This challenging approach or ‘errorful learning’ (EF) involves learning from mistakes, but for patients with limited capacity to process and store information, these approaches are unlikely to be of benefit.

POST-POLIO SYNDROME: To rehabilitate or not to rehabilitate?

Post-polio syndrome (PPS) is a complex of symptoms occurring late in polio survivors. One of the challenging aspects in planning the rehabilitation of these patients is the difference in emphasis between management of their original polio and the PPS. For polio exercise and activity are generally encouraged. This is not the case for PPS where energy conservation and fatigue management are important.

This pilot study looked at the effectiveness of a group rehabilitation programme for PPS sufferers using a comprehensive range of outcome measures that could serve as a useful pointer for research into more ‘clinical’ interventions in chronic neurological disease. The rehabilitation, itself, was a comprehensive three-week residential programme which involved physical exercise, education and peer support. Given that this study was a pilot, control groups were not employed, although the patient group were divided into three cohorts of 10 of whom only three dropped out by the end of the six-month follow-up period.

Perhaps unsurprisingly, given the nature of the disease, no differences were identified in muscle strength at follow-up. There were, however, significant improvements in levels of depression, fatigue and improvements in exercise endurance. Given that fatigue and endurance are two of the main ongoing problems for this patient group, it is encouraging that this relatively brief intervention may be of value in ameliorating these symptoms. A smaller subgroup also had significant improvements in general day to day functioning as measured by the Canadian Occupational Performance Measure. While this study is a pilot and, as such, lacks a control group, it is an illustration of the potential and lasting (to six months, at least) benefit of a multi-disciplinary intervention for this challenging patient group for whom no specific treatment in the typical medical sense has shown to be of benefit.

Prolonged benefit in post-polio syndrome from comprehensive rehabilitation: A pilot study.

POST-POLIO SYNDROME: To rehabilitate or not to rehabilitate?

Post-polio syndrome (PPS) is a complex of symptoms occurring late in polio survivors. One of the challenging aspects in planning the rehabilitation of these patients is the difference in emphasis between management of their original polio and the PPS. For polio exercise and activity are generally encouraged. This is not the case for PPS where energy conservation and fatigue management are important.

This pilot study looked at the effectiveness of a group rehabilitation programme for PPS sufferers using a comprehensive range of outcome measures that could serve as a useful pointer for research into more ‘clinical’ interventions in chronic neurological disease. The rehabilitation, itself, was a comprehensive three-week residential programme which involved physical exercise, education and peer support. Given that this study was a pilot, control groups were not employed, although the patient group were divided into three cohorts of 10 of whom only three dropped out by the end of the six-month follow-up period.

Perhaps unsurprisingly, given the nature of the disease, no differences were identified in muscle strength at follow-up. There were, however, significant improvements in levels of depression, fatigue and improvements in exercise endurance. Given that fatigue and endurance are two of the main ongoing problems for this patient group, it is encouraging that this relatively brief intervention may be of value in ameliorating these symptoms. A smaller subgroup also had significant improvements in general day to day functioning as measured by the Canadian Occupational Performance Measure. While this study is a pilot and, as such, lacks a control group, it is an illustration of the potential and lasting (to six months, at least) benefit of a multi-disciplinary intervention for this challenging patient group for whom no specific treatment in the typical medical sense has shown to be of benefit.

Prolonged benefit in post-polio syndrome from comprehensive rehabilitation: A pilot study.

In the learning tasks, themselves, the DAI subjects (predictably) performed more poorly than controls under the EF conditions. The authors suggest that the neuroanatomical activation patterns in each group imply that this is due to reduced metabolism in the precuneus and posterior cingulated gyrus for the DAI group. The activation of the parietal lobes seen in this group may represent compensatory activity or disinhibition. Unfortunately, insufficient consideration is given to the dynamic processes of recovery and no clear relationship is sought between the time passed since the brain injury and learning patterns. The learning process, itself, is difficult to delineate, given that individuals tend to acquire information in unique ways. A further study looking at how activity patterns change over time in this patient group may be more useful in terms of the potential to translate to clinical practice.

 للغاية könnte man sagen, dass die LERNÜBUNG (EL) auf der Suche nach einer Funktion ist?

The role of adult neurogenesis in the dentate gyrus of the hippocampus is an area of intense debate. The fact that new neurons are born in this area of the mature CNS is not in doubt, but the problem is what do these cells do once they have matured and been incorporated into new circuits? A couple of papers have added to the literature in this area. The first by Kim et al investigated the consequences of preventing the death of these cells using a Bax-KO mouse, Bax being a pro-apoptotic gene (such that not having it would cause neurons newly born not to die by programmed cell death). Using this model (which of course assumes that most new neurons born in the dentate gyrus are lost through apoptosis), they found that there was a readjustment of synaptic connections with impairments in both electrophysiological and behavioural hippocampal function. In other words if a population of new born neurons in the hippocampus are not removed by natural cell death, they clog up the system and cause deficits which behaviourally involve memory acquisition and consolidation. This is consistent with the study of Trouche et al who followed the fate of newly dividing (BrdU positive) neurons in terms of their integration and functional abilities. In this study the authors used the activity-dependent protein Zif268 in combination with high resolution confocal imaging and co-labelling with BrdU and the neuronal marker NeuN, to follow the fate of cells in the context of controlled behaviours involving the water maze. They found that these newly born neurons are recruited into neuronal networks involved with spatial memory and that once incorporated are involved in the updating and strengthening of that memory and thus contribute in part to its durability. Thus these cells are recruited under experience specific conditions and store those conditions as part of their contribution to the spatial memory of the hippocampus. Quite how this information is then used, updated and modified in the long term is not clear but this and the other study of Kim et al does highlight that these new neurons do make a significant contribution to some aspects of hippocampal memory.

In the learning tasks, themselves, the DAI subjects (predictably) performed more poorly than controls under the EF conditions. The authors suggest that the neuroanatomical activation patterns in each group imply that this is due to reduced metabolism in the precuneus and posterior cingulated gyrus for the DAI group. The activation of the parietal lobes seen in this group may represent compensatory activity or disinhibition. Unfortunately, insufficient consideration is given to the dynamic processes of recovery and no clear relationship is sought between the time passed since the brain injury and learning patterns. The learning process, itself, is difficult to delineate, given that individuals tend to acquire information in unique ways. A further study looking at how activity patterns change over time in this patient group may be more useful in terms of the potential to translate to clinical practice.

 электроэнцефалографические активности в каждой группе имели различные характеристики. В исследовании используется функциональная respiration, которая является показателем нервной системы, а не что-то проявляющееся непосредственно. – LB

Ueno H, Maushi M, Miyani M, Muranaka H, Kondo K, Ohshita T, Matsumoto M.
Neurology at the Movies

A number of previous ACNR articles have examined the portrayal of neurological disorders in literary texts. Novels and stories have been a potent stimulus for film adaptations, and hence it is not surprising that neurological disorders, with their dramatic possibilities (“based on a true story”), sometimes crop up in films. However, films often exercise a powerful suggestion to the masses, and hence incorrect or inauthentic portrayals of neurological disease might exert adverse effects. Here we review a number of examples of “neurology at the movies”. We say nothing here of psychiatric disorders portrayed in film, examples of which have been documented, but note the power of films to influence public opinion, for example One Flew Over the Cuckoo’s Nest (1975) probably did a great disservice to the cause of ECT. We have supplemented our own film viewing experiences with recourse to an internet movie database (IMDb.com) and reviews from Time Out magazine (www.timeout.com/film). We are sure readers can think of further examples. Documentary films are not considered here, biographies and dramas being the genres most likely to involve portrayals of neurological disease.

Epilepsy

Epilepsy in films has been systematically (and entertainingly) examined by Baxendale. Included are film versions of Dostoyevsky’s novels The Idiot and The Brothers Karamazov which feature characters with epilepsy. Also noted in this review is a film version of Shakespeare’s Othello (1965), presumably based on Othello’s blackout which is labelled as epilepsy by Iago. Objections to the notion that Othello has epilepsy have been raised, including the circumstances and the likely diagnosis.4

More recent films with an epilepsy connection include The Exorcism of Emily Rose (pictured) (2005) and Requiem (2005), both based on documented German source cases of the early 1970s. Emily Rose believes herself to be possessed by demons and undergoes an exorcism, only to die a couple of days later. The priest conducting the exorcism is then accused of “negligent homicide” when it transpires that he suggested cessation of Emily Rose’s epilepsy drugs. A courtroom drama ensues, one issue being whether this patient had epilepsy and psychosis. In Requiem, the protagonist is Michaela who suffers seizures and hallucinations and stops anti-epileptic drug therapy of her own volition.

Multiple sclerosis

The celebrated cellist Jacqueline du Pré (1945-87) is perhaps one of the most high profile sufferers of MS. The biopic Hilary & Jackie (1998) documents her relationship with her sister, but the Time Out review fails to even mention Jackie’s multiple sclerosis. The theme of young talent cruelly robbed by disease is also evident in the drama Go Now (1995), when a young soccer player develops MS. On a more positive note in the TV drama The West Wing, President Bartlett (Martin Sheen) seems able to run the White House and the USA despite his MS, although he has concealed this diagnosis from the voters. Serious neurological illness in heads of state, and whether this should be known to the electorate has been previously reviewed.5

Parkinson’s disease

Based on the Oliver Sacks celebrated book, Awakenings (1990) is an account of postencephalitic parkinsonism and the effects of levodopa. Otherwise, film accounts of PD seem few, despite its prevalence. The comedy drama What we did on our holiday (2006) features an elderly patient with PD.

Motor neurone disease

Despite its clinical rarity there have been a few films featuring motor neurone disease. In the US, the condition is sometimes known as Lou Gehrig’s disease because the legendary New York Yankees first baseman developed this condition, as seen in...

Stroke
Biopics have occasionally featured stroke; for example The Patricia Neal Story (1981), about the actress, sometime wife of Roald Dahl, whose stroke-related aphasia threatened her acting career. Julian Schnabel’s film of Le scaphandre et le papillon (The diving bell and the butterfly, 2007), based on Jean-Dominique Bauby’s account of locked-in syndrome from the inside, is perhaps one of the most compelling film accounts of neurological disease.

Cognitive disorders, including Alzheimer’s disease
Some films featuring characters with amnesia or memory loss have already been noted. It has been suggested that Memento (2000), wherein Shelby (Gary Oldman) suffers from a kind of memory loss whereby he remembers life before the murder of his wife but is unable since then to recall anything for more than a few minutes, was inspired by the classic case of HM who developed profound anterograde amnesia after bilateral anterior temporal lobe resection, including parts of the hippocampi, for an intractable seizure disorder. Viewing the film, however, is little substitute for reading the many reports on HM. Shelby is never happy in contrast with HMs apparent contentment.

Anne as a feature of dementia or Alzheimer’s disease (AD) has attracted screen portrayals such as Mia Farrow in Forget Me Never (1999) and Judi Dench in Iris (2001), the latter based on John Bayley’s memoir of his wife Iris Murdoch’s illness, and Michael Caine in Is Anybody There? (2008). In Away From Her (2006), Fiona (Julie Christie) and Gordon are an aging couple whose lives are affected by AD: Time Out stretches credibility when stating that “the most compelling element . . . is the suggestion that Fiona’s AD is in part Gordon’s cross to bear for his past mendacious [innocuity].” The film is “a rare if difficult pleasure”, for which Christie was Oscar nominated. In The Notebook (2004), Duke reads to Allie from a storybook about the relationship of two ill-fated young lovers. Time Out spots the glaring inconsistency: “Apparently Allie can no longer recognise her husband or children, but has retained enough shortterm memory and powers of concentration to follow Duke’s romantic narrative from day to day”. Similar qualms may be voiced about Contes (2008) in which a police inspector with AD solves a murder mystery in a clinic treating neurodegenerative disorders.

Miscellaneous others
Many neurologists may never see a case of X-linked adrenoleukodystrophy unless they attend a showing of Lorenzo’s oil (1992), documenting the Odone family attempting to develop a treatment for this rare condition. Lorenzo’s oil (4:1 glyceryl trioleate-glyceryl trirucate) reduces hexacosanoic acid levels, and following clinical trial has been recommended in asymptomatic boys with normal brain MRI results.

Daniel Day Lewis won an Oscar for his rendition of Christy Brown, a sufferer from cerebral palsy, in My left foot (1989).

Jack Nicholson portrays a writer with obsessive compulsive disorder in As good as it gets (1997), although an altogether more compelling rendition is given by Toby Shalhoub in the US TV serial Monk.

Conclusion
To paraphrase: Should neurologists watch films? What has cinema ever done for neurology? Is “biopic” simply a blend word for “biographical myopic”? Although licence is integral to the art of film making, the majority of (non-documentary) filmic portrayals of neurological disease are simply dishonest. Maybe they should carry a health warning.

Chorea – Could the Plumbing be Humming?
A right-handed 73-year-old gentleman developed problems with right upper limb coordination, most noticeable when writing and cutting meat. This occurred on a background of well-controlled hypertension and hypothyroidism. Initial examination revealed right upper limb cortical sensory loss and pseudoathetosis. A CT brain showed a left parietal infarct and he was started on aspirin. On review a month later, he had developed marked right-sided chorea affecting both upper and lower limbs, and a left carotid bruit was heard. Magnetic resonance imaging of the brain confirmed the left-sided parietal lobe infarct which involved the post-central gyrus and the underlying white matter; the basal ganglia were normal. Intracranial magnetic resonance angiography was normal. Carotid duplex ultrasonography revealed 90% stenosis in the left internal carotid artery with a high peak systolic velocity of 430 cm/s and an abnormal waveform. Other causes of chorea were excluded.

A left carotid endarterectomy was performed under general anaesthetic and carotid bypass. Postoperatively there was immediate and complete resolution of the hemichorea. The right upper limb cortical sensory loss and associated pseudoathetosis persisted.

One explanation for chorea is the extensive loss of proprioceptive secondary to parietal lobe damage which may result in extreme pseudotetanus mimicking true chorea ("parietal chorea"). Another possible explanation is haemodynamic chorea, secondary to critical carotid artery stenosis and hyperperfusion of the ipsilateral basal ganglia. There is laboratory and clinical evidence showing that the basal ganglia are particularly susceptible to ischaemia. The right hemichorea resolved after carotid endarterectomy, and the cortical sensory symptoms attributable to the parietal infarct did not. This shows that the infarct was not the cause of chorea, but it is consistent with a haemodynamic origin for the chorea.

The incidence of haemodynamic chorea is unknown and needs further study. We have recently described three cases of hemichorea associated with contralateral critical carotid artery stenosis; complete resolution of chorea occurred after carotid endarterectomy in all cases (Neurology 2008 Dec 9; 71 (24):e8082). It is argued that cerebral vascular imaging is an important consideration in new onset hemichorea, even in the absence of other neurological signs suggestive of cerebrovascular disease.

ABN CASE PRESENTATION PRIZE WINNER

Wessex Neurosciences Centre, Southampton University Hospitals Trust.
Correspondence to: Dr Ian Galea, Clinical Lecturer in Neurology, Wessex Neurosciences Centre, Mailpoint 101, Level B, Southampton University Hospital Trust, Tremona Road, Southampton SO16 6YD.
The European Working Time Directive in Neurology – Time for training?

The European Working Time Directive (EWTD) became part of UK law in 1998, but has only been fully applied to junior doctors since 1st August 2009. Despite having 11 years to prepare, some trusts have struggled to implement fully compliant rotas and concerns remain about the effects of reduced working hours on training. So what impact will EWTD have on trainees in neurology and how can we ensure that the quality of our training is protected?

What changes has EWTD brought?
The key change brought by the full implementation of EWTD is a reduction in the maximum hours of work each week from 56 to 48. Importantly, in contrast to the New Deal definition, all time on call at the place of work counts as work. Time on call from home is not defined as work. However, should 11 hours of uninterrupted rest not be achieved due to calls overnight, compensatory rest must be provided.

Is a 48 hour week now a reality for neurology trainees?
The vast majority of trusts will now have introduced rotas that are, at least on paper, compliant. But the reality may be different. As professionals, we are likely to stay at work until the job is done whatever our contract dictates. If hours monitoring reveals that a rota is compliant on paper but not in practice, junior doctors and clinical tutors should get involved in designing a rota that really works.

An important barrier to EWTD compliance is the increasing problem of staff shortages producing rota gaps. This has been another unintended consequence of the disastrous Modernising Medical Careers. The BMA advises that junior doctors should not be pressurised into providing cover for rota gaps. Individual doctors currently have the right to “opt out” of EWTD in order to undertake such work on a locum basis, but groups of doctors cannot be asked to opt out by trusts.

How will reduced hours affect training?
Reduced working hours potentially threaten the quality of training by limiting the clinical experience of neurology trainees. This problem is compounded if new rotas for SHOs result in inadequate junior support. The recent ABNT trainees’ survey highlighted concerns about registrars doing inappropriate tasks and missing valuable training opportunities as a consequence. In addition, the new curriculum for neurology training is four years rather than five in duration (even for those who have not done research). How then can we ensure that the quality of training is protected and the status of new consultants is not downgraded?

Possible solutions
Non-resident rotas should be safeguarded wherever possible, allowing minimal disruption to daytime working. Shift systems can also work but only where there are enough doctors on the rota. With smaller numbers, there is a risk that rotas may be EWTD compliant but not adequate for training purposes. Trusts might consider including staff grade doctors or research fellows in rotas to increase numbers and rectify this problem. Crucially, trusts must ensure that there are enough SHOs to cover routine ward work. Where this is not the case, trainees should raise their concerns with their clinical tutor as soon as possible and contact the ABNT for advice.

A fundamental change in the culture of training may also be required: we can no longer rely solely on the apprenticeship model. But “tick-box” work-based assessments are not the answer. Consultants need protected time to provide high quality training to juniors. For instance, consultants supervising registrars in clinic could have reduced lists to give them time to offer real teaching.

Finally, should we consider reverting to a five year programme of neurology training? At the ABNT forum in Liverpool there was considerable support for this idea, particularly if one year was dedicated to sub-specialty training. We are keen to consult more widely on this issue, so please do get in touch with your views.

I believe we are fortunate that the EWTD offers protection of our work-life balance that was denied to previous generations of physicians. If rotas are carefully designed and registrars’ training needs are prioritised, high quality training in fewer hours should be possible. To achieve this alongside the competing pressures of service delivery, trainees themselves need to play an active role in making this work.
A Reply to the ABNT

It would be a pity for the call by British neurology trainees for a wider debate about the role of the neurologist in the UK to go unanswered. Implicit in that call is a consideration of the number of neurologists needed in the UK and the nature of the jobs that they might do, an unresolved discussion that has occupied and perhaps divided British neurology (and general medicine) since the 1950s. The debate needs to continue and needs to take account of the changing political and health service climate. It can then inform those who can influence the supply and working patterns of British neurologists. The position that I take and can justify is that British neurology has failed to expand and is unlikely to expand sufficiently (in number or in geographical distribution) to fulfill its obligation to the nation’s neurological health. To make matters worse, the problems caused by this failure are compounded by ever increasing demand, a consequence of well intentioned but poorly designed political imperative.

The first objective of the ABN is "to encourage nationwide availability of excellent and equitable neurological services". In 1954, when there were 41 neurologists in the London metropolitan regions and 18 in the rest of the UK, a Royal College of Physicians Committee reported that there should be an active neurological department in all such centres of population as necessary to cover the needs of the country. As the ABN approaches its seventy-seventh anniversary, with around 550 neurologists in the UK (one per 110,000) the goal of equitable access seems as elusive as ever.

What’s happening to outpatient neurology?

In 2005-6 the chance of an individual being seen in a neurology outpatient clinic varied hugely according to their PCT of residence despite a doubling of consultant numbers in the preceding ten years. This suggested that consultant expansion in UK neurology had not been driven by a rational initiative to improve neurological health but by a combination of outpatient waiting list targets and the prioritising of new patients with neurological symptoms. The need for outpatient neurology has proved to be much greater than predecessors anticipated and demand has yet to be satiated. David Stevens estimated that, according to need as calculated by disease prevalence figures, one neurologist was necessary per 100,000 population (or around 600 in the UK and very close to the current national figure) yet in some parts of the country there is already one neurologist per 60,000. Most areas are still struggling to meet outpatient demand but this shouldn’t be a surprise. In other demand-led health systems, for example the USA or Italy the average neurologist serves a much smaller population (1 per 22,000 USA, 1 per 8,000 Italy) and so it might have been anticipated that unchecked outpatient demand could propel the number of neurologists needed in the UK to at least one per 60,000 (or around 1000 neurologists) if not many more. GPs and other specialists are referring more and more as patient and professional expectations rise and they become less and less comfortable managing a medical specialty in which knowledge and practice are changing rapidly. NICE judgements on neurological conditions ask for early referral to an expert for suspected cases and continuing follow-up for established illness. Expansion has happened but, thus far, it hasn’t made an impact on the lottery of neurology expertise; areas that already had a fair share have been least likely to gain more consultant neurology outpatient time over the past ten years as areas without.

What’s happening to inpatient neurology?

Whilst the rising demand and continuing inequity in outpatients is visible, the situation with emergency and inpatient neurology is probably much worse (because ill patients don’t travel unless they know to or have to) and is hidden. There are over 400 acute admitting hospitals in the UK and, in 2007, 550 neurologists (of whom 50 are counted as academic). Many hospitals have access to on-site inpatient neurology opinion for only one or two days a week, sometimes for outpatients but not for inpatients. The RCP manpower report of 2007 showed that the population in the UK served by a neurologist varies by a factor of 3.9 (an imbalance only exceeded in the medical specialties of medical oncology) so what are the chances, throughout the country, of a patient admitted with an acute neurological illness being seen by someone in that place with specific training and qualification in that specialty? Does anyone know what is happening in those acute admitting hospitals without readily available neurology opinion to patients with new neurological illness or complications of existing ones? The doubling of consultant numbers since 1997 may have given more DGHs more neurology outpatient time but that doesn’t necessarily imply improvement in the local management of acute neurology.

How did we get here?

The first report of the RCP committee on Neurology was published in July 1945, and recommended that “there will need to be a considerable increase in the total number of neurologists and a more even distribution of them throughout the country, in accordance with the distribution of the population.” The follow-up 1954 report pointed out that “there had not been an expansion of the neurological services proportionate to the increase in other medical specialties” and that “the public was not receiving as satisfactory a neurological service as it was entitled to expect”. The latter report gives two explanations for the failure to expand the neurological services at that time: financial stringency and the attitude of the medical profession towards specialisation.

Dr Paul Morrish
is a Consultant Neurologist at Gloucestershire Royal Hospital, Gloucester.

Correspondence to:
Dr Paul Morrish
E. Paul.Morrish@glos.nhs.uk
1984 Hopkins’ asked neurologists and professors of medicine how they saw the development of neurology in the UK; his paper throwing an entertaining light on subsequent events. Whilst most neurologists argued for pure neurology posts, members of the Association of Professors of Medicine instead argued for posts of physician-with-an-interest in neurology. In 1992, when there were 152 whole time equivalent neurologists, Richard Langton Hewer published two linked papers beginning with a quote from a North America.”1 This case, they argued, that “The United Kingdom must have one of the worst neurology services in the Western World.” He reviewed the history of British neurology and the distribution of neurologists in the country, and found that the population served by a neurologist in the UK varied by a factor of four (so it’s changed since then by 0.1). Considering the burden of neurological disease (note that it was disease, not symptoms) he wrote that it would be unrealistic that this could all be dealt with by neurologists; the majority of people with neurological symptoms, and many with serious neurological disease, would have to do neurology by non-neurologists. The ABN report of 2002 Acute neurological emergencies in adults looked instead at inpatients and called for a national ratio of one neurologist per 45,000 in order to provide a comprehensive on-site full time neurology service in all DGHs (so about 1400 nationally in total). Another ABN report, of 2003, UK Neurology the next ten years described what is needed for a high quality neurological service and stated that “all acutely ill inpatients with neurological problems should be looked after by consultant neurologists”, requiring “significant increases in staffing.” British neurology began in London and went on to develop regional centres. As the number of neurologists has grown so have the regional centres have grown, with the hub and spoke system touted as the way to best serve the country’s needs. But now, whilst we seem to be in a position where we have many hubs and lots of spokes, some of the spokes are only in place once, twice or however many times a week the neurologist might visit (unless they are on leave that week). For many admitting DGHs, on-site neurology opinion is not a reliable resource.

What are the consequences?

Working in a DGH means the daily consequences of the long-term rationing of neurological expertise outside of teaching hospitals. At least one generation of British doctors may not have been taught or has not learned enough neurology to manage the commonly presenting symptoms and illnesses. In this context, when the outpatient barriers came down, it was inevitable that many patients with neurological symptoms would be referred, as part of the inundation of outpatients there are many who might not have been sent had the referring doctor a little more competence and confidence. Some patients are referred unnecessarily whilst others are referred to the wrong place; a common complaint from patients with neurological symptoms is that they have seen several other specialists first. Just as the barriers to outpatient neurology have been forced down by waiting list pressure so they appear (in my opinion, properly so) to be coming down with inpatients too. Whilst some generalists appear paralysed by managing acute neurology others seem almost too keen to “have a go” themselves or more likely to be aware of the scarcity of neurologists to wait. I’m often surprised both by how some non-neurology colleagues make little effort to sort out the problem, whilst others make too much effort in the wrong direction. Neurological experience and training in the UK has been in short supply for so long yet we still expect neurologists to diagnose and manage so many well.

Thrombolysis is being introduced across the country, the acute patients in many areas to be assessed by A&E doctors or geriatricians. So a potentially lethal treatment with still-debated benefit even to those who definitely have the condition is placed into the hands of those with acute care duties and accurate decision and act quickly in medical emergencies (probably OK if they get the diagnosis right, possibly fatal if they don’t) or those who are trained in managing the complications of growing older. There are now specifically-trained stroke doctors. The production of doctors who are experts in only one acute brain illness strikes me as being another well-intentioned but poorly executed strategy calls for a rapid and competent specialist assessment. From which specialty will these specialists be drawn? Will it be from those with training in psychiatry from those with training in acute medicine or from those with training in neurology? The scarcity of neurologists outside of teaching hospitals also has implications for neurological research. Samples are biased towards teaching hospital patients (predominantly urban and mobile), and patients living further away are denied the opportunity to take part. In the DGH the priority in an over-stretched specialty has to be service delivery, not research.

What is going to happen next?

At a time when the NHS is about to feel the consequences of the global economic crisis, and after ten years of decreasing training and consultant posts, it is no longer reasonable to blame financial stringency. Perhaps instead we have to look again at the attitude of the medical profession towards specialisation, within and outside of neurology and within and outside of the regional centres. It may not be a surprise to neurologists that the professors of Medicine got it so completely wrong in 1984, although, being Professors, their opinion then may not have been representative of their DGH physician colleagues. What are the opinions now? Are GPs and general physicians likely to manage and hold back as much of the general neurological symptomatology as they did? Ten years of managing waiting lists and seeing inpatient referrals as a DGH-based consultant has taught me otherwise. Would cardiologists, endocrinologists, gastroenterologists or nephrologists be happy for a sufficient level of expertise in their specialty to be assumed and delivered by non-specialists? And when these specialists are on-call for general medicine are they or should they be comfortable with acute neurology? What about other neurologists’ opinions now? Do they want expansion? My best guess is that in the less well provided areas they will and in the better provided areas they won’t. If regional centre neurologists aren’t keen on expansion, do they support expansion in the rest of the country to bring it up to an equivalent level?

Current prediction is of at most 65 new neurology posts this year and a continued shortfall of jobs in the future. At 65 per year, long as no-one departs the specialty or chooses to work flexibly neurology will reach 1400 nationally (the figure estimated by the ABN to reach 1 per 45,000) in about twelve years. Planning and predicting jobs has always been difficult but I’m aware of at least three unfilled jobs in very desirable parts of the country already and there may be many more. If outpatient demand carries on ups, and if general physicians become more reliant on specialist opinion in neurology (as I believe they should and will), then there should be even more unfilled posts to come. The predicted NHS financial difficulties ahead may however mean that there isn’t the money to fund new pots and, sadly, that British neurology will have missed a golden opportunity to improve service provision.

What can we do about it?

Can we do anything in the meantime as the demand for inpatient and outpatient neurological expertise increases and the UK under-produces neurologists? The first thing might be to develop methods for sieving and serving the demand for new outpatient neurology opinion. Turning back the tide is impossible so we may need a tier of doctors in neurology who can manage the bulk of headache, dizzy turns and query first fit and TIA referrals. They would, in effect, be community-based and could come from neurology general practice, general medicine or geriatrics. If they are to have sufficient credibility and skill it seems important that they are trained by neurology according to national curriculum and continue to work in close association with neurology. Relying on self-appointed GP (or other) experts in stroke, PD and dementia is surely not good enough. Freeing some neurologist outpatient time in this way might give more time for inpatient care. Perhaps also, for the time being, we should stop appointing neurologists to areas with plenty already: it is in the district general hospitals and communities that neurologists are needed. These hospitals usually have MRI machines, and neurophysiology can travel, so the lack of investigative facilities is no longer a reason for centre-based neurologists not to get...
out more. Transferring patients to the local neurological centre may be OK in large cities but it doesn’t work so well when the centre is 50 miles away. If we can’t train and fund sufficient neurology expertise to provide for wherever the patient is admitted, then perhaps we should be arguing that it is only neurologically safe to admit them to selected places.

Conclusion
It is to be regretted that the problems in neurological service delivery in the UK have not been noted by neurology alone. The recent All Party Parliamentary Group report on Parkinson’s disease (17) identifies significant inequalities in service for patients with Parkinson’s disease. This group wasn’t the first (3,11,18) and perhaps its stern rebuke, what it calls “a lack of leadership for neurological services at local and national level”, is deserved. A better staffed and more equitably distributed neurology could provide local and national leadership for service delivery in Parkinson’s disease, as well as for epilepsy, multiple sclerosis, stroke, dementia, muscle disease and every other neurological illness.

The UK urgently needs more predominantly DGH-based neurologists. When they become available they will need to run outpatient clinics and organise around themselves teams of medical and paramedical staff to manage the acute admissions, the new outpatient referrals and the long term neurological illness in the community. In the meantime, whilst neurological expertise remains in short supply (not enough neurologists being trained, not enough money to pay for them), the UK needs to make the most of what is available. That may mean teaching and supervising GP’s and hospital doctors in neurology so that wherever the patient presents and is admitted in the UK they can be sure of competent neurological expertise and management. It may mean imposing local quotas on outpatient referrals, perhaps by condition, by age, by postcode or by GP. It may mean ensuring that, in the short term, undersupplied areas are encouraged to provide new consultant neurology posts whilst well-supplied areas are discouraged. It must mean that improving the neurological service in the UK becomes the first item on each ABN council agenda.

This is my opinion, admittedly shaped (or distorted) predominantly by south England DGH experience. Can anyone offer a different view and a counter-argument? ♦

REFERENCES
2. The ABN. http://www.theabn.org/theatre/principalobjectives.php
5. Stevens DL. Neurology in the United Kingdom. Numbers of clinical neurologists and trainees. 1996 ABN.

NEWS REVIEW

Elekta provides VMAT and radiosurgery solutions for New Jersey Health System

CentraState Medical Center (Freehold, New Jersey) has purchased two new state-of-the-art Elekta radiation therapy treatment systems, both with Volumetric Modulated Arc Therapy (VMAT). The first site in the world to have both Elekta Axesse and Elekta Infinity, CentraState will offer the most advanced cancer care available to its patients.

CentraState Medical Center, a part of the CentraState Healthcare System, currently is treating 45 to 50 patients a day – with fluctuations as high as 70 patients per day, all on one treatment unit. When the time came to add another treatment system, CentraState elected to replace another manufacturer’s system and install two new Elekta systems.

One key determining factors in choosing Elekta was CentraState’s desire to partner with a company that would ensure the institution would remain ahead of the technological curve. Robert Smith, MS, Director of Physics, says, “We spent a lot of time comparing Elekta with other systems, and discovered that Elekta systems had many advantages over the competition, especially in imaging capabilities. ‘We’ll be replacing our current IMRT techniques with VMAT,’ he explains. ‘We’re looking to VMAT to increase throughput, but more importantly to reduce treatment times for our patients. That, in turn, will reduce the chance of patient movement during the treatment. We feel we can deliver a better, more precise treatment to the patient by delivering the dose in a shorter time.’

For the latest Elekta VMAT news, visit elekta.com/vmat
For further information contact Stina Thorman, E. lstina.thorman@elekta.com

If you would your news to feature in ACNR, please contact Rachael Hansford,
T: 01747 860168, E. rachael@acnr.co.uk

ACNR > VOLUME 9 NUMBER 4 > SEPTEMBER/OCTOBER 2009 > 53

COMMENT
Richard Hammond opens new National Rehabilitation Centre for children with brain injuries

Broadcasting Richard Hammond paid a visit to The Children’s Trust in Tadworth, Surrey on 16th July to open the charity’s new residential rehabilitation centre for children with acquired brain injuries. The £7 million centre, funded entirely by voluntary donations, will enable The Children’s Trust to help even more children from across the UK rebuild their lives after sustaining a devastating brain injury as a result of a tragic accident or severe illness.

Richard Hammond spent the morning meeting children, parents and staff at the Trust before the opening ceremony. He was escorted on his visit by 13 year old Chas, who stayed at the Trust for rehabilitation in 2008 after being severely injured in a skiing accident.

Having sustained a serious brain injury himself in a near fatal accident whilst filming for the BBC’s Top Gear in 2006, Richard Hammond explained that the care and rehabilitation of brain-injured children was a cause close to his heart. "I know only too well the challenges people face following a severe brain injury, but for a child there are extra dimensions because their brains are still developing. This amazing new building will help The Children’s Trust’s specially trained staff give these children the best chance of rebuilding their lives."

Andrew Ross, Chief Executive of The Children’s Trust, said, “It has been wonderful to celebrate the opening of our new centre with the children, families and staff who are using it, as well as the generous individuals and organisations who have funded it. Our challenge was to design a facility for the nursing and care of children with the most complex physical, psychological and social needs without losing sight of our main purpose: to give the children a road back to normality, marrying expert care with a ‘can do’ attitude to disability.”

For more information E. pressoffice@thechildrenstrust.org.uk

Carl Zeiss offers free colour selection for LSM 710

The explosion in the number of new fluorescent dyes has opened up exciting new opportunities for life science researchers. However, each requires the microscope system to be equipped with an appropriate excitation laser, a limitation that has greatly restricted their adoption.

According to Carl Zeiss, the answer is the new In Tune laser system, which offers free selection of laser lines in the range 488 nm to 640 nm. Together with the LSM 710 laser scanning microscope, In Tune enables performance of novel fluorescence measurements for the first time. Whatever the excitation wavelength required, In Tune matches the dye perfectly to enable their use in intensity or lifetime imaging experiments. The choice of fluorescent dyes is unrestricted as In Tune can be used alongside other system lasers, from near UV to far red. This is particularly important for FRET (Förster Resonance Energy Transfer) as In Tune allows the unrestricted use of new dye combinations in the green-red spectral range. With its 40 MHz pulse repetition rate In Tune is also an ideal source of excitation for FLIM (Fluorescence Lifetime Imaging Microscopy) experimentation.

For further information E. micro@zeiss.co.uk

Neupro®, the only transdermal patch for Restless Legs Syndrome

The only transdermal patch in the UK for the symptomatic treatment of moderate to severe idiopathic Restless Legs Syndrome (RLS) in adults was launched recently by UCB. Applied once-a-day, Neupro® (rotigotine transdermal patch) allows for continuous drug delivery to provide stable drug levels in the bloodstream 24 hours a day and improves symptom control day and night.

RLS may present itself as a 24-hour condition with symptoms frequently occurring during periods of rest, such as during sleep, or inactivity during the day, like long car journeys. RLS is thought to affect between three and 10% of the population to some extent, causing sensations such as tingling or prickling sensations, burning, tugging and creeping. If left untreated, in some patients RLS can cause exhaustion and negatively impact quality of life.

The goal of treatment for idiopathic RLS is symptom remission. Clinical trials, evaluating the efficacy and safety of rotigotine over a six month period in almost 1000 patients with RLS showed significant and clinically relevant improvements in RLS symptoms compared with placebo and that the treatment was generally well tolerated. The most common adverse drug reactions reported in RLS patients treated with rotigotine were nausea, application site reactions, fatigue and headache.

“The symptoms of Restless Legs Syndrome can have a significant impact on quality of life for many people, often affecting sleep, job performance and social activities. People with severe symptoms may require lifelong treatment,” said Professor Ray Chaudhuri, Consultant Neurologist, University College Hospital. “The clinical trial data show that rotigotine provides us with a new and effective option for tackling this debilitating condition.”

For further information contact UCB on T. 01753 534 655.
Carl Zeiss launches user-friendly software for Quantitative Force Measurement

The microscopic manipulation of biological specimens, individual cells and cell components is becoming increasingly common in life science laboratories. The launch of the PALM MicroTweezer Force Measurement module from Carl Zeiss which eliminates the need for additional hardware and time-consuming adjustment and calibration, means that the technique can be adopted by many more users.

The Force Measurement module not only controls the manipulation of microscopic particles with the PALM optical tweezers but also enables the quantitative measurement of forces relevant to many life science disciplines, visualising the data in real-time. The new module offers users a flexible and user-friendly interface to the software’s functionality, which will enable a large degree of freedom in experimental design and test configuration.

The module also enables the use of the PALM MicroTweezers system for pure specimen manipulation as well as for position detection and quantitative force measurement. This means that direct comparisons may be made between experimental results and data from the literature. Calibration routines for the characterisation of the optical tweezers are performed automatically and archived together with all experimental data and images.

The Force Measurement module is supplied together with an FM StarterKit containing the FluidCell component, which permits fast and easy sample preparation. The PALM MicroTweezers and Force Measurement module can be combined with various solutions from Carl Zeiss, including the PALM Microbeam and Colibri light source.

For more information E. micro@zeiss.co.uk

Addenbrooke’s places first UK order for next generation imaging system

Addenbrooke’s Hospital in Cambridge will be one of the first sites to benefit from Siemens’ advanced CT, the SOMATOM® Definition Flash. The hospital has placed the first UK order for the new system which will be installed later in the year.

“As a result of this installation, we will be able to image patients at a greatly reduced dose and this will be invaluable for the people we see on a more regular basis. We are also hoping to omit one phase of the diagnostic study for some patients. This will not only alleviate dose on the individual, but enable us to make efficient use of the machine,” said Dr. Ashley Shaw, Lead Radiologist for CT at Addenbrooke’s Hospital. “We have continued to use Siemens for our CT services at Addenbrooke’s as a result of a longstanding partnership that delivers consistently good value.”

The Definition Flash will image patients alongside three other Siemens CT machines. Each system in the department is used for a range of imaging requirements including neurology and whole body scanning. The Definition Flash will support the systems already in place.

The CT also introduces a new level of image quality in Dual Energy scanning, increasing the contrast without having to apply higher radiation dose. This is achieved via a new, selective photon shield which blocks unnecessary parts of the energy spectrum. With improved separation of the two simultaneous data sets, radiologists at Addenbrooke’s will be able to classify the chemical composition of tissues in routine CT studies.

For more information see www.siemens.co.uk

An acute interest in ultrasound

The Royal Liverpool University Hospital has chosen SonoSite’s MicroMaxx® hand-carried ultrasound system for a range of acute medical applications, including FAST scanning, insertion of central lines and detection of aneurysms. Mr Peter Burdett-Smith, a Consultant in Emergency Medicine and Director of the Medical Division at the hospital, explained, “We first introduced point-of-care ultrasound in emergency medicine approximately four years ago, using an older SonoSite instrument. Last year we upgraded to the MicroMaxx system, taking advantage of its improved resolution to perform regional nerve blocks for manipulation of fractures and injuries. Once we became familiar with the MicroMaxx system, the straightforward controls have allowed us to quickly develop techniques for a variety of applications, and we have been working closely with radiology colleagues to extend our use of ultrasound even further.”

“Focused ultrasound for emergency medicine is now widespread, and has been incorporated into the College of Emergency Medicine’s training curriculum, with the first examinations due next year. All of our senior medical staff are trained in emergency ultrasound and, thanks to SonoSite’s support, we are the regional training centre for emergency ultrasound, teaching these vital skills to registrars and consultants from across the region and beyond.”

For information on SonoSite courses contact education@sonosite.com. For more information about SonoSite products T. 01462 444 800, E. europe@sonosite.com
COPAXONE® (glatiramer acetate) PRE-FILLED SYRINGE PRESCRIBING INFORMATION

Presentation – Glatiramer acetate 20mg solution for injection in 1ml Pre-filled Syringe.

Indication – Treatment of patients who have experienced a well-defined first clinical episode and are determined to be at high risk of developing clinically definite multiple sclerosis (MS).

Reduction of frequency of relapses in relapsing-remitting MS in ambulatory patients. In clinical trials this was characterised by at least two attacks of neurological dysfunction over the preceding two-year period.

Dosage and administration – 20mg of glatiramer acetate (one pre-filled syringe) administered sub-cutaneously once daily.

Children (12 - 18 years) No specific studies. Data suggests safety profile similar to that seen in adults.

Children (<12 years) Not recommended.

Elderly No specific data. Impaired renal function No specific studies. Monitor renal function during treatment and consider possibility of deposition of immune complexes.

Contra-indications – Known allergy to glatiramer acetate or mannitol (excipient). Pregnancy.

Special warnings and precautions – Sub-cutaneous use only. Initiation to be supervised by neurologist or experienced physician. Supervise first self-injection and for 30 minutes after. One or more of vasodilatation, chest pain, dyspnoea, palpitations or tachycardia may occur within minutes after injection. These generally resolve spontaneously after a short time. If severe, treat symptomatically. Caution in patients with pre-existing cardiac disorders and review such patients regularly. Rarely, convulsions and/or anaphylactic or urticarial reactions. If severe, treat appropriately and discontinue Copaxone.

Interactions – No formal evaluation. Increased incidence of injection-site reactions with concurrent corticosteroids. Theoretical potential to affect distribution of protein-bound drugs, therefore concurrent use of these should be monitored.

Pregnancy and lactation – Not to be used in pregnancy. Consider contraceptive cover. No data on excretion in human milk.

Undesirable effects – Local injection site reactions (erythema, pain, mass, pruritus, oedema, inflammation, hypersensitivity, injection site atrophy). An immediate post-injection reaction (one or more of vasodilatation, chest pain, dyspnoea, palpitation, tachycardia) may occur within minutes, reported at least once by 31% of patients receiving Copaxone compared to 13% of patients receiving placebo.

Overdose – Monitor, treat symptomatically.

Pharmaceutical Precautions – Store Copaxone in refrigerator (2ºC to 8ºC). If the pre-filled syringes cannot be stored in a refrigerator, they can be stored at room temperature (15ºC to 25ºC) once for up to one month. Do not freeze.

Legal Category – POM.

Further Information – Further medical information available on request from Teva Pharmaceuticals Limited, The Gate House, Gatehouse Way, Aylesbury, Bucks, HP19 8DB. Date of Preparation – March 2009.

ACNR AD. 297x210mm