How Does the Brain Fill-in the Visual World?

Our awareness of the visual environment comes to us from the pattern of light on the retina. But this pattern is an incomplete record of the visual scene, because many pieces of the scene fall on the blind spot or are obscured by retinal vessels. This loss of information can be worsened by disease-induced retinal damage, or when cortical injury following stroke damages areas of visual cortex corresponding to parts of the visual field. Yet healthy people and most patients are largely unaware of this missing or incomplete information. Instead, we see the visual scene as though it were complete because the brain ‘fills-in’ the missing information. The neural mechanisms involved in such perceptual filling-in can tell us a great deal about normal visual processes, and are also likely to be involved when parts of the visual system are damaged and more extensive filling-in takes place.

Filling-in at the blind spot

Although the blind spot is devoid of photoreceptors and carries no visual information from the corresponding region in visual space, when we view the world through one eye, we do not see a blank patch; the visual system fills-in the missing information from the surrounding colour or pattern (Figure 1). Behavioural studies in healthy people suggest that filling-in at the blind spot is a rapid, preattentive process that occurs early in the visual system. For example, if several rings are viewed, but with one positioned in the visual field so its retinal projection lies just around the blind spot, then this particular ring will ‘pop out’ of the group as it is perceived not as a ring, but as a filled-in disc among the other rings that do not lie over the blind spot.1 Even an extremely narrow border (0.05 deg) surrounding the blind spot, will generate the appearance of uniform colour filling-in the blind spot,2 consistent with the theory that such filling-in depends on local processes generated at the edge of the blind spot representation in primary visual cortex. Single cell recordings from anaesthetised monkeys show that when filling-in takes place at the blind spot, neuronal responses are generated at the retinotopic representation of the blind spot in primary visual cortex.3,4 However, the precise mechanism by which perceptual filling-in across the blind spot occurs is still unknown. The two main theories are that it involves lateral propagation of signals from the edge of the blind spot, or is due to remapping of receptive fields of surrounding neurons into the blind spot region.5

Filling-in after prolonged fixation

Filling-in also takes place in normal vision during prolonged fixation. For example, a figure viewed in the periphery on a bland and featureless background will seem to disappear after a few seconds of prolonged fixation, to be replaced by the background (see Figure 2a). This type of filling-in is known as Troxler fading.6 A similar but more striking effect is seen if the featureless background is replaced by a dynamic texture, similar to the static on a television set. This dynamic background promotes rapid filling-in of even quite salient figures placed on top of the background, and the resultant effect is described as an ‘artificial scotoma’ because the figure becomes invisible and ‘filled in’ by the textured background (see Figure 2b). These ‘artificial scotomas’ may be associated with similar neural processes that lead to the filling-in which takes place when targets are stabilised on the retina, as eye movements disrupt the artificial scotoma.

Behavioural studies suggest that the filling-in associated with an artificial scotoma takes place in early retinotopic cortex as it is influenced by low-level sensory factors such as eccentricity and boundary length of the figure that ‘fills-in’.7,8 This is consistent with single cell studies in monkeys9,10 and neuroimaging reports in humans.11,12 However, recent work suggests that higher cognitive factors may also play a role, as directing spatial attention to the peripheral figure makes it

Figure 1: Examples of perceptual filling-in at the blind spot. Hold the page approximately 15 cm from your face, close your right eye and fixate the cross with your left eye while attending to the horizontal bars. Move the page gently closer and/or further away from you until the green disc falls into the blind spot. When the green disc falls across the blind spot, it will disappear and the space it occupies will be perceptually filled-in by the horizontal bars. Now close your left eye and fixate the cross with your right eye while attending to the pink and yellow target. Again, move the page closer and further away until the target falls into the blind spot. When the yellow disc falls across the blind spot, the appearance will be of a large pink circle, with the yellow disc disappearing and becoming filled-in by the surrounding pink. Similar to example shown in Komatsu, H. Nature Reviews Neuroscience, 2006;7:220-31.
ABBREVIATED PRESCRIBING INFORMATION

(please consult the summary of product characteristics (SPC) before prescribing.)

KEPPRA® film-coated tablets 250 mg, 500 mg, 750 mg, 1000 mg
KEPPRA® oral solution
KEPPRA® 100 mg/ml concentrate for solution for infusion

Active Ingredient: Tablets: levetiracetam 250, 500, 750 and 1000 mg. Oral Solution: levetiracetam 100 mg per ml. Infusion: levetiracetam 100 mg per ml.

Uses: Monotherapy for partial onset seizures with or without secondary generalisation in patients from 16 years of age with newly diagnosed epilepsy. Adjunctive therapy for partial onset seizures with or without secondary generalisation in adults and children from 4 years of age, for myoclonic seizures in adults and adolescents from 12 years of age with juvenile Myoclonic Epilepsy and for primary generalised tonic-clonic seizures in adults and adolescents from 12 years of age with Idiopathic Generalised Epilepsy.

Infusion: an alternative for patients when oral administration is temporarily not feasible. Dosage and Administration: Oral solution should be diluted prior to use. Infusion: Keppra concentrate must be diluted in at least 100 ml of a compatible diluent and administered intravenously as a 15-minute infusion. Monotherapy (adults and adolescents from 16 years): Recommended starting dose of 250 mg twice daily which should be increased to an initial therapeutic dose of 500 mg twice daily after two weeks. The dose can be further increased by 250 mg twice daily every two weeks depending upon the clinical response. The maximum dose is 1500 mg twice daily. Adjunctive therapy: Adults and adolescents older than 12 years or weighing 50 kg or more: 500 mg twice daily can be increased to up to 1500 mg twice daily. Dose changes can be made in 500 mg twice daily increments or decreases every two to four weeks. Elderly: Adjustment of the dose is recommended in patients with compromised renal function. Children aged 4 to 11 years and adolescents (12 to 17 years) of less than 50 kg: 10 mg/kg twice daily, increased up to 30 mg/kg twice daily. Do not exceed increases or decreases of 10 mg/kg twice daily every two weeks. The lowest effective dose should be used. (For full dosing recommendations see SPC.) Patients with renal impairment: Adjust dose according to creatinine clearance as advised in SPC. Patients with hepatic impairment: No dose adjustment with mild to moderate hepatic impairment. With severe hepatic impairment (creatinine clearance <70ml/min) a 50% dose reduction is recommended, as the creatinine clearance may underestimate the renal insufficiency. Contraindications, Warnings etc.: Contraindications: Hypersensitivity to levetiracetam, other pyrrolidone derivatives or excipients. Precautions: If discontinuation of treatment reduce dose gradually as advised in SPC. Due to its excipients, the oral solution may cause allergic reactions (possibly delayed). Infusion: Keppra concentrate contains 7.196 mg of sodium per vial. To be taken into consideration by patients on a controlled sodium diet. Monitor patients for signs of suicidal ideation and behaviours. Advise patients and carers to seek medical advice should such signs emerge. Interactions: Keppra did not affect serum concentrations of phenytoin, carbamazepine, valproic acid, phenobarbital, lamotrigine, gabapentin or primidone. Drugs excrated by active tubular secretion could reduce the renal clearance of the metabolite. Levetiracetam 1000 mg daily did not affect the pharmacokinetics of oral contraceptives (ethinyl-estradiol and levonorgestrel). Levetiracetam 2000 mg daily did not affect the pharmacokinetics of digoxin and warfarin and prothrombin times were not modified. Pregnancy and lactation: Should not be used during pregnancy unless clearly necessary. Breast-feeding not recommended. Driving, etc.: Caution recommended when performing skilled tasks, e.g. driving vehicles or operating machinery. Adverse Effects: Incidence of undesirable effects considered to be at least possibly related in controlled clinical studies: Very common (≥10%): somnolence, sedation, dizziness, headache, dizziness, hyperkinesia, tremor, ataxia, convulsion, amnesia, balance disorder, disturbances in attention, memory impairments, emotional lability/mood swings, hostility, depression, insomnia, nervousness/irritability, agitation, personality disorders, thinking abnormal, vertigo, rash, eczema, pruritus, diplopia, vision blurred, myalgia, infection, nasopharyngitis, cough increased, thermoregulatory. Consult SPC in relation to other side effects. Pharmaceutical Precautions: Tablets: None. Oral solution: Store in original container. After first opening use within 2 months. Infusion: Use immediately after dilution. Legal Category: POM. Marketing Authorisation Numbers: 250 mg x 60 tabs: EU/1999/146/004. 500 mg x 60 tabs: EU/1999/146/010. 750 mg x 60 tabs: EU/1999/146/017. 1000 mg x 60 tabs: EU/1999/146/024. Solution x 300 ml: EU/1999/146/027. Infusion (500 mg/5 ml) x 10 vials: EU/1999/146/030. NHS Cost: 250 mg x 60 tabs: £28.70. 500 mg x 60 tabs: £52.30. 750 mg x 60 tabs: £89.10. 1000 mg x 60 tabs: £101.10. Solution 300 ml x £11.00. Infusion (500 mg/5 ml) x 10 vials: £135.00. Name and Address of PL Holder: UCB Pharma S.A., Allée de la Recherche 60, B-1070 Brussels, Belgium. Further information is available from: UCB Pharma Ltd., 1005 Sidel Road, York, UK, LS1 3WJ. Tel: 0113 515 5350 Fax: 0113 515 53632. Email: medicalinformation@ucb.com Date of Revision: January 2009

Adverse events should be reported. Reporting forms and information can be found at www.yellowcard.gov.uk

© 2009 UCB Pharma Ltd.
® Keppra is a registered trade mark of UCB Pharma Ltd.

Figure 2. Filling-in after prolonged fixation. (a) Example of Troxler fading. Hold the page 20cm away from your face. Fixate the cross with both eyes open, after a few seconds, the blue pattern will fade and disappear.

(b) Example of an artificial scotoma. A square figure is placed in the near periphery on the background of dynamic twinkling noise. Participants fixate centrally and the square figure gradually fades and disappears.

Figure 3. Occluded objects (a,b) Visual search with for amodally completed target. Identifying the notched circle is harder in (A) as it is amodally completed and perceived as a circle among the other circles. In (B), the notched circle ‘pops out’. Search display similar to those used in (c,d) Depth cues to identify occluded objects. The left-hand image (c) is difficult to interpret. (d) Adding a blue snake-like occluder helps to define the occluded figures as uppercase Bs. Similar to example shown in Nakayama et al., 1989.

more likely to ‘fill in’ and disappear. Thus, although filling-in may be generated by low-level, early retinotopic neural processes, it is also modulated by higher cognitive factors.

Filling-in behind occluders

The world is very cluttered and most objects do not present themselves in isolation but are seen at least partially occluded by other objects. Yet we do not have the impression of being surrounded by fragmented objects. The brain ‘fills in’ the missing information and our impression is the familiar one of viewing complete objects. This type of filling-in of objects behind occluders is also known as amodal completion and seems to occur at slightly later stages of visual processing than the filling-in of artificial scotomas and the blind spot. The effects of amodal completion can be seen when subjects are asked to search for a notched circle
in an array of circles and squares. If the notched circle abuts the edge of one of the squares so that it seems to be occluded by it, the notched circle takes longer to find (see Figure 3a) as it is perceived as a complete circle in a sea of complete circles. Occluded objects are also easier to recognise than those with the equivalent portions deleted (see Figure 3b), suggesting that inferred depth is used to inform the visual system of object boundaries, as objects are far more likely to be partly occluded than have bits missing. This would suggest some involvement of object related areas in identifying occluded items. Indeed, a recent neuroimaging study showed increased activity during presentation of occluded objects in the lateral occipital complex (LOC), a region known to be involved in object processing and in the posterior intraparietal region. The sparseness of fully black and notched circles is likely to involve a large number of information processing steps such as distinguishing between the boundaries of the occluded and the occluding object, assigning each of the resulting partial views a surface and then filling-in the missing information of each part using clues from depth disparity and colinear edges.

Understanding the processes involved in filling-in in the healthy brain can provide insights into filling-in following visual loss

Filling-in as a response to disorders of vision

Patients with retinal scotomas due to macular degeneration and toxoplasmaemia also experience perceptual filling-in. This can be problematic, especially in age-related macular degeneration, as early detection of the macular disease is essential to preserve foveal function with newer treatments and when patients fill-in across their scotomas they are unaware of their visual field deficits. The mechanisms of filling-in across retinal scotomas are still debated. In monkeys, cells within primary visual cortex representing the lesion expand their receptive fields within minutes after inducing a retinal lesion and several months after the lesion, the receptive fields have expanded and shifted to outside the lesion. Similar reports of receptive field reorganisation in V1 (primary visual cortex) have been shown in retinal lesions in cats and following cortical lesions in kittens. In humans, reports are less consistent. Visual cortex (including V1) deprived of retinal input due to macular degeneration shows increased activation with functional MRI to stimuli outside the corresponding region in visual space. Reorganisation also occurs following loss of visual input due to optic radiation damage following stroke. However, other studies have failed to find consistent evidence for cortical reorganisation in macular degeneration and a recent study suggests that large scale cortical reorganisation may only occur with complete absence of functional foveal vision. The processes underlying this cortical reorganisation remain unknown. One possibility is that it arises from disinhibition of pre-existing long-range horizontal connections in V1, but this would require connections longer than those known to occur in primate V1. Alternatively, new horizontal connections might be formed. A third possibility is that reorganisation occurs due to new or unmasked feedback projections from higher visual areas with larger receptive fields (see also reference 35 for an example).

Conclusion

Perceptual filling-in, in many different forms, plays a critical role in completing missing information in normal human vision and is also a consequence of visual loss. The mechanisms are likely to differ between the various types of filling-in but may be important in designing treatments to encourage cortical reorganisation following damage to visual structures.

REFERENCES