Peripheral Nerve Sheath Tumours: what can we learn from genetic syndromes?

This article provides an overview of peripheral nerve sheath tumours (PNSTs), focusing particularly on the settings in which they occur, their pathology, and underlying genetic basis.

Developmental background
During very early development, a process known as neurulation forms the neural tube. From the posterior aspect of this tube, the neural crest is formed, which maintains its neuroectodermal origin but migrates along segmental paths to form the peripheral nervous system and related structures (including, for example, melanocytes). Within the neural crest population are sensory ganglion neurons that will reach their peripheral targets then send out axons back to synapse with the CNS, and Schwann cells (peripheral glia). Schwann cells differ from CNS glia in three main ways. One Schwann cell myelinates only one axon, while oligodendrocytes myelinate many axons. They contain a different type of myelin, including for example ‘protéine 0’ as opposed to the ‘myelin basic protein’ of CNS glia; and Schwann cells support axon regrowth, whereas myelin from oligodendrocytes has been shown to inhibit axon regeneration.

What is a peripheral nerve sheath tumour?
A PNST is a tumour composed of cells resembling peripheral nerve sheath elements, primarily Schwann cells, but also perineurial cells and fibroblasts. Most of these tumours are benign and are either schwannomas or neurofibromas.1-3 These two tumours are distinct entities with varying clinical pictures, different genetic backgrounds, and contrasting prognoses. While schwannomas are almost always benign in nature, a subtype of neurofibroma is prone to malignant transformation. The vast majority of benign PNST represent sporadic tumours, occurring as single lesions. Neurofibromas and schwannomas also commonly occur within the clinical spectrum of neurofibromatoses type 1 and 2 (NF1 and NF2), respectively. Among the malignant PNSTs (MPNSTs), half occur sporadically and half are linked to NF1. They account for 5% of malignant soft tissue tumours and 10% of tumours that by definition are WHO grade I, and thought to arise from mutated Schwann cells. Macroscopically, schwannomas are said to exist as a single mass with peripheral nerve stretched along one aspect, whereas a neurofibroma expands the nerve fascicle and therefore has numerous axons running through it (see Figure 1). Many of the tumour cells stain with antibodies to S-100, which simply reflects their neuroectodermal origin. On closer inspection, these two tumours have many other differences.

Neurofibromas demonstrate uniform histological appearances, featuring a mixture of scattered cell types including neoplastic Schwann cells, perineurial-like cells and fibroblasts, in a matrix of mucoid substances and scattered collagen fibres, typically giving a ‘shredded carrot’ appearance (Figure 1). Mitotic activity is low. Schwannomas are usually biphasic in appearance with cellular ‘Antoni A’ and hypocellular ‘Antoni B’ areas, palisaded nuclear arrangements into ‘Veroey bodies’ and a low mitotic rate. Rarer variants include the cellular schwannoma with a higher reported proliferation rate, and others.

Malignant PNSTs
MPNSTs are relatively rare, clinically aggressive and morphologically variable, with a tendency towards divergent mesenchymal differentiation. As these tumours often arise from a precursor lesion (plexiform neurofibroma) they are also thought to be Schwann cell-derived. They classically have densely cellular fascicles, a high mitotic rate and 5th cranial nerve is affected. Vestibular (acoustic) schwannomas are commonly known as neuromas, but this is a misnomer as they are tumours of Schwann cells, not neuromas. Depending on the location, the symptoms may vary and include hearing difficulties and facial paraesthesias from vestibular schwannomas, or pain and other symptoms from spinal nerve/cord compression. MPNSTs usually present as progressively enlarging masses, often in the extremities, or in a spinal location where they commonly present with pain.

Pathology of PNSTs
Both schwannomas and neurofibromas are benign tumours that by definition are WHO grade I, and thought to arise from mutated Schwann cells. Macroscopically, schwannomas are said to exist as a single mass with peripheral nerve stretched along one aspect, whereas a neurofibroma expands the nerve fascicle and therefore has numerous axons running through it (see Figure 1). Many of the tumour cells stain with antibodies to S-100, which simply reflects their neuroectodermal origin. On closer inspection, these two tumours have many other differences.

Neurofibromas demonstrate uniform histological appearances, featuring a mixture of scattered cell types including neoplastic Schwann cells, perineurial-like cells and fibroblasts, in a matrix of mucoid substances and scattered collagen fibres, typically giving a ‘shredded carrot’ appearance (Figure 1). Mitotic activity is low. Schwannomas are usually biphasic in appearance with cellular ‘Antoni A’ and hypocellular ‘Antoni B’ areas, palisaded nuclear arrangements into ‘Verocay bodies’ and a low mitotic rate. Rarer variants include the cellular schwannoma with a higher reported proliferation rate, and others.

Malignant PNSTs
MPNSTs are relatively rare, clinically aggressive and morphologically variable, with a tendency towards divergent mesenchymal differentiation. As these tumours often arise from a precursor lesion (plexiform neurofibroma) they are also thought to be Schwann cell-derived. They classically have densely cellular fascicles, a high mitotic rate and

<table>
<thead>
<tr>
<th>Table 2: A Comparison of NF1 and NF2.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Frequency of disease</td>
</tr>
<tr>
<td>NF1 Approx. 1 in 3000</td>
</tr>
<tr>
<td>NF2 Approx. 1 in 40 000</td>
</tr>
<tr>
<td>Genetics</td>
</tr>
<tr>
<td>NF1 AD</td>
</tr>
<tr>
<td>NF2 AD</td>
</tr>
<tr>
<td>Mutated protein</td>
</tr>
<tr>
<td>NF1 Neurofibromin chr17q11</td>
</tr>
<tr>
<td>NF2 Merlin/Schwannomin chr22q12</td>
</tr>
<tr>
<td>Classical PNST features</td>
</tr>
<tr>
<td>NF1 Neurofibromas, either multiple, or a single plexiform lesion</td>
</tr>
<tr>
<td>NF2 Schwannomas, typically of vestibular nerve, and classically bilateral</td>
</tr>
<tr>
<td>Propensity for malignant transformation</td>
</tr>
<tr>
<td>NF1 5% of plexiform neurofibromas; 50% of MPNSTs are linked to NF1</td>
</tr>
<tr>
<td>NF2 Schwannomas may very rarely undergo malignant transformation.</td>
</tr>
<tr>
<td>Other possible Neurological features</td>
</tr>
<tr>
<td>NF1 Sphenoid wing dysplasia, Macrocephaly, Epilepsy, Gial tumours (optic nerve)</td>
</tr>
<tr>
<td>NF2 Meningiomas, Gial tumours</td>
</tr>
<tr>
<td>Other clinical features</td>
</tr>
<tr>
<td>NF1 Café au lait spots, Axillary freckling, Sarcomas, Lisch nodules in iris</td>
</tr>
<tr>
<td>NF2 Posterior subcapsular lens opacity, Cerebral calcification</td>
</tr>
</tbody>
</table>

Correspondence to:
Dr Ute Pohl, PhD, MRCPath, Consultant Neuropathologist, Department of Cellular Pathology, Queen's Hospital, Romford, Essex, RM7 0AG, UK.
Tel: 01708 435500 ext. 2943 Fax: 01708 435290 E: ute.pohl@bhrhospitals.nhs.uk

Ute Pohl is a Consultant Neuropathologist at Queen's Hospital, Romford, Essex, UK. She is currently working as a Consultant Neuropathologist at Queen's Hospital, Romford, Essex, and Addenbrooke’s Hospital, Cambridge, UK, and MGH, Boston, USA. She is currently working as a Consultant Neuropathologist at Queen's Hospital, Romford, Essex. Her areas of interest include the pathology and genetics of CNS and PNS tumours, peripheral nerve and muscle.
Schwannomas and NF2
NF2 associated vestibular schwannomas tend to differ from sporadic schwannomas by way of their early age of presentation, lobulation and classical eventual bilaterality. They show similar clinical presentations to sporadic schwannomas, namely hearing difficulties, or spinal symptoms. Apart from the common type, the variant of plexiform schwannoma is typically seen in NF2. Recently, the diagnostic criteria for NF2 have been revised: while the original criteria for NF2 required a family history of the disease or bilateral vestibular schwannomas, the current diagnostic criteria are based on the facts that other lesions often precede vestibular schwannomas, and that a family history is lacking in 50% of cases.

Schwannomatosis
Schwannomatosis is a recently recognised third major form of neurofibromatosis that causes multiple schwannomas without vestibular schwannomas. Patients with schwannomatosis represent 2.4 to 5% of all patients requiring schwannoma resection and approximately one third of patients with schwannomatosis have tumours limited to a single limb or segment of spine. Epidemiologic studies suggest that schwannomatosis is as common as NF2, but that familial occurrence is rare. Patients with schwannomatosis present with pain which remains the primary clinical problem and indication for surgery. Revised diagnostic criteria have recently been published.

Genetic background
Neurofibromas
The NF1 gene encodes the protein neurofibromin, which is highly expressed in the nervous system. It reduces cell proliferation via both the inactivation of the proto-oncopogene p21/Ras, and the control of a kinase (serine/threonine kinase mTOR). Both sporadic and NF1-associated neurofibromas have been shown to harbour mutations in the NF1 gene or carry deletions affecting the gene. There is no hot-spot mutation in the gene, and numerous mutations have been identified. Interestingly, significant differences in gene expression were found between dermal and plexiform neurofibromas.

Schwannomas
Mutations in the NF2 gene are implicated in the formation of sporadic and NF2-linked schwannomas. In most cases, loss of the remaining wild-type allele of the gene on chromosome 22 is associated with the NF2 mutation (akin to Knudson’s two-hit hypothesis). Loss of the NF2 protein Merlin/schwannomin appears to be the major feature of schwannomas, strongly suggesting this as a critical event in schwannoma formation. Merlin is linked to the actin cytoskeleton and has several functions, including inhibition of proliferation. Similar to NF1, the NF2 gene has not demonstrated hot-spot mutations, and sporadic lesions cannot be genetically differentiated from NF2-linked cases.
Familial Schwannomatosis
This is not linked to NF2 mutations but has recently been reported to be associated with germline mutations of INI1/SMARCB1. 14,15

MPNST
The mutations seen in NF1-associated benign neurofibromas are also seen in MPNSTs in patients with NF1. Sporadic MPNSTs also have NF1 gene mutations, probably due to their origin. Genetic events implicated in malignant transformation from neurofibroma to MPNST include mutations of p53 and CDKN2A, genes which are involved in cell cycle control. Unlike other sarcomas, no specific chromosomal changes have been demonstrated. Recently, expression array studies have revealed differentially regulated genes (‘signatures’) for MPNST versus neurofibromas, but again no differences between those that were sporadic and those that were linked to NF1. 14,15

Summary
Peripheral nerve sheath tumours are common, mostly benign and usually sporadic tumours with considerable clinical significance due to their association with the neurofibromatoses (NF1, NF2 and the more recently recognised familial schwannomatosis). The most frequent PNSTs are schwannomas and neurofibromas, the latter of which can show malignant transformation (pleomorphic subtype). Malignant PNSTs are strongly linked to NF1 (50%). The genetic background of PNSTs is largely known, while genetic testing is possible for all neurofibromatoses, the specific clinical presentation of neurofibromatosis 1 or 2, or even schwannomatosis, is often pathognomonic. Diagnostic criteria for NF2 and schwannomatosis have recently been revised.

References

NeuroDrug
CNS disorders – what the future holds for drugs and therapies
Advances in the understanding of underlying disease mechanisms of neurological disorders means that novel therapeutic targets can be identified and drugs can be targeted to disease cause rather than effect. New classes and formulations of drugs for psychiatric disorders are also in development which will make better use of healthcare resources. There is a huge unmet need for drugs and therapies with improved safety, tolerance and efficacy.

neurodrug 2007 focuses on drug discovery and development across the CNS sector. Our agenda focuses on novel therapeutic targets for neurological, neurodegenerative and psychiatric disorders. Key learnings include case studies on cutting edge drugs and therapies, lead optimisation, novel biomarkers and imaging, latest approaches to drug delivery and crossing the blood brain barrier.

For more information call +44 (0) 207 242 2324, fax: +44 (0) 207 242 1508 or visit the official event website

23 - 25 October 2007
The Royal Garden Hotel
London, United Kingdom

Restoring Mobility: Theories, Technologies and Effective Treatments
at the Royal College of Physicians,
11 St Andrews Place, Regent’s Park, London NW1
Monday 10 December 2007

Mobility problems arising from neurological and musculoskeletal disease or injury interfere with independence and lifestyle for many people throughout the world. The aims of this conference are to:

• consider how movement is learnt and how disruption to this process occurs in disease and injury
• explore the use of technologies (ranging from deep brain stimulation to orthoses, prosthetic limbs and robotics) to restore function
• explore the interface between therapies and technologies
• learn about how individuals have managed their own mobility problems in often very inhospitable environments.

The conference is aimed at doctors working in rehabilitation medicine, neurology, orthopaedics, rheumatology and paediatrics, physiotherapists and occupational therapists, prosthetists and orthotists. It will also be relevant for bioengineers working in clinical services and industry.

Programmes and booking forms are available on-line at www.rcplondon.ac.uk/conferences or from:
Conference Department, Royal College of Physicians
Tel: 020 7935 1174 Ext. 252/300/436 Fax: 020 7224 0719
Email: conferences@rcplondon.ac.uk

28 | ACNR • VOLUME 7 NUMBER 3 • JULY/AUGUST 2007